RESUMEN
RESUMEN Objetivo Analizar el impacto de la contaminación del aire por material particulado PM2,5 y su relación con el número de asistencias a entidades de salud por enfermedades respiratorias por medio de analítica de datos. Métodos Se analizaron datos del Área Metropolitana de Medellín, Colombia, ciudad ubicada en un valle estrecho densamente poblado e industrializado y que ha presentado episodios críticos de contaminación en los últimos años. Se analizaron tres fuentes de datos: datos meteorológicos aportados por el SIATA (Sistema de Alerta Temprana de Medellín y el Valle de Aburrá); datos de contaminación por material particulado PM2,5 aportados por SIATA; y reportes de los RIPS (Registros Individuales de Prestación de Servicios de Salud) aportados por la Secretaría de Salud. Resultados Se evidenció la relación entre la concentración de PM2,5 con las asistencias médicas por los diagnósticos de IRA, EPOC y asma. En un episodio crítico de contaminación por PM2,5, se encontraron los siguientes retardos en la atención médica: entre 0 y 2 días para el IRA, 0 y 7 días para el EPOC y 0 y 5 días para el asma. Discusión Se encontraron coeficientes de correlación que evidencian la asociación de la concentración de PM2,5 con las asistencias por los diagnósticos de IRA, EPOC y asma. La mayor correlación entre las tres morbilidades se presentó para el asma. La variable meteorológica de mayor correlación con la variable objetivo es la temperatura del aire para el caso de EPOC y asma. En el caso de IRA, la variable con mayor correlación es la velocidad del viento. Por otro lado, el día de la semana es una variable de gran importancia a la hora de realizar un estudio de atenciones por enfermedades.
ABSTRACT Objective To analyze the impact of air pollution by PM2,5 particulate matter and its relationship with the number of attendances to health entities for respiratory diseases through data analytics. Methods Data from the Metropolitan Area of Medellín, Colombia, a city located in a densely populated and industrialized narrow valley and that has presented critical episodes of contamination in recent years, were analyzed. Three data sources were analyzed: meteorological data provided by SIATA (Early Warning System of Medellín and the Aburra Valley), PM2,5 particulate matter contamination data provided by SIATA, and RIPS reports (Individual Registers for the Provision of Health Services) provided by the health department. Results The relationship between the concentration of PM2,5 and medical care for the diagnoses of ARI, COPD and asthma was evidenced. In a critical episode of PM2,5 contamination, the following delays in medical care were found: between 0-2 days for IRA, 0-7 days for COPD, and 0-5 days for asthma. Discussion Correlation coefficients were found that show the association of the concentration of PM2,5 with the attendances for the diagnoses of ARI, COPD, and asthma. The highest correlation between the three morbidities was found for asthma. The meteorological variable with the highest correlation with the objective variable is air temperature in the case of COPD and asthma. In the case of IRA, the variable with the highest correlation is wind speed. On the other hand, the day of the week is a variable of great importance when carrying out a study of care for diseases.
RESUMEN
Abstract Benford or "first digit" law has been used successfully to evaluate epidemiological surveillance systems, especially during epidemics. Conventional statistical methods for evaluation (x2 and log-likelihood ratio) are controversial when the number of data is small (n <7). In this methodological note a new test is proposed to evaluate compliance with Benford's law with small samples, which can be used with biomedical, medical and public health data.
Resumen La ley de Benford o de los "primeros dígitos" ha sido usada exitosamente para evaluar los sistemas de vigilancia epidemiológica, en especial durante epidemias. Los métodos estadísticos convencionales para la evaluación (x 2 y razón de log-verosimilitud) son controversiales cuando los datos son poco (n<7). En esta nota metodológica se propone una nueva prueba para evaluar el cumplimiento de la ley de Benford con muestras pequeñas, que puede ser usada con datos de biomedicina, medicina y salud pública.