Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 68(5): e0131523, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38517189

RESUMEN

Chromosomal and transferable AmpC ß-lactamases represent top resistance mechanisms in different gram-negatives, but knowledge regarding the latter, mostly concerning regulation and virulence-related implications, is far from being complete. To fill this gap, we used Klebsiella pneumoniae (KP) and two different plasmid-encoded AmpCs [DHA-1 (AmpR regulator linked, inducible) and CMY-2 (constitutive)] as models to perform a study in which we show that blockade of peptidoglycan recycling through AmpG permease inactivation abolished DHA-1 inducibility but did not affect CMY-2 production and neither did it alter KP pathogenic behavior. Moreover, whereas regular production of both AmpC-type enzymes did not attenuate KP virulence, when blaDHA-1 was expressed in an ampG-defective mutant, Galleria mellonella killing was significantly (but not drastically) attenuated. Spontaneous DHA-1 hyperproducer mutants were readily obtained in vitro, showing slight or insignificant virulence attenuations together with high-level resistance to ß-lactams only mildly affected by basal production (e.g., ceftazidime, ceftolozane/tazobactam). By analyzing diverse DHA-1-harboring clinical KP strains, we demonstrate that the natural selection of these hyperproducers is not exceptional (>10% of the collection), whereas mutational inactivation of the typical AmpC hyperproduction-related gene mpl was the most frequent underlying mechanism. The potential silent dissemination of this kind of strains, for which an important fitness cost-related contention barrier does not seem to exist, is envisaged as a neglected threat for most ß-lactams effectiveness, including recently introduced combinations. Analyzing whether this phenomenon is applicable to other transferable ß-lactamases and species as well as determining the levels of conferred resistance poses an essential topic to be addressed.IMPORTANCEAlthough there is solid knowledge about the regulation of transferable and especially chromosomal AmpC ß-lactamases in Enterobacterales, there are still gaps to fill, mainly related to regulatory mechanisms and virulence interplays of the former. This work addresses them using Klebsiella pneumoniae as model, delving into a barely explored conception: the acquisition of a plasmid-encoded inducible AmpC-type enzyme whose production can be increased through selection of chromosomal mutations, entailing dramatically increased resistance compared to basal expression but minor associated virulence costs. Accordingly, we demonstrate that clinical K. pneumoniae DHA-1 hyperproducer strains are not exceptional. Through this study, we warn for the first time that this phenomenon may be a neglected new threat for ß-lactams effectiveness (including some recently introduced ones) silently spreading in the clinical context, not only in K. pneumoniae but potentially also in other pathogens. These facts must be carefully considered in order to design future resistance-preventive strategies.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Klebsiella pneumoniae , Proteínas de Transporte de Membrana , Pruebas de Sensibilidad Microbiana , Peptidoglicano , Plásmidos , beta-Lactamasas , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/metabolismo , Peptidoglicano/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Plásmidos/genética , Animales , Infecciones por Klebsiella/microbiología , Mariposas Nocturnas/microbiología
2.
Heliyon ; 9(9): e19486, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37662790

RESUMEN

Citrobacter freundii is characterized by AmpC ß-lactamases that develop resistance to ß-lactam antibiotics. The production of extended-spectrum ß-lactamase (ESBL) is substantially high in Escherichia coli, C. freundii, Enterobacter cloacae, and Serratia marcescens, but infrequently explored in C. freundii. The present investigation characterized the ESBL C. freundii and delineated the genes involved in decrease in antibiotics resistance. We used the VITEK-2 system and Analytical Profile Index (API) kit to characterize and identify the Citrobacter isolates. The mRNA level of AmpC and AmpR was determined by RT-qPCR, and gel-shift assay was performed to evaluate protein-DNA binding. Here, a total of 26 Citrobacter strains were isolated from COVID-19 patients that showed varying degrees of antibiotic resistance. We examined and characterized the multidrug resistant C. freundii that showed ESBL production. The RT-qPCR analysis revealed that the AmpC mRNA expression is significantly high followed by a high level of AmpR. We sequenced the AmpC and AmpR genes that revealed the AmpR has four novel mutations in comparison to the reference genome namely; Thr64Ile, Arg86Ser, Asp135Val, and Ile183Leu while AmpC remained intact. The ΔAmpR mutant analysis revealed that the AmpR positively regulates oxidative stress response and decreases ß-lactam and aminoglycosides resistance. The AmpC and AmpR high expression was associated with resistance to tazobactam, ampicillin, gentamicin, nitrofurantoin, and cephalosporins whereas AmpR deletion reduced ß-lactam and aminoglycosides resistance. We conclude that AmpR is a positive regulator of AmpC that stimulates ß-lactamases which inactivate multiple antibiotics.

3.
Int J Mol Sci ; 23(13)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35806412

RESUMEN

The abuse or misuse of antibiotics has caused the emergence of extensively drug-resistant (XDR) bacteria, rendering most antibiotics ineffective and increasing the mortality rate of patients with bacteremia or sepsis. Antimicrobial peptides (AMPs) are proposed to overcome this problem; however, many AMPs have attenuated antimicrobial activities with hemolytic toxicity in blood. Recently, AMPR-11 and its optimized derivative, AMPR-22, were reported to be potential candidates for the treatment of sepsis with a broad spectrum of antimicrobial activity and low hemolytic toxicity. Here, we performed molecular dynamics (MD) simulations to clarify the mechanism of lower hemolytic toxicity and higher efficacy of AMPR-22 at an atomic level. We found four polar residues in AMPR-11 bound to a model mimicking the bacterial inner/outer membranes preferentially over eukaryotic plasma membrane. AMPR-22 whose polar residues were replaced by lysine showed a 2-fold enhanced binding affinity to the bacterial membrane by interacting with bacterial specific lipids (lipid A or cardiolipin) via hydrogen bonds. The MD simulations were confirmed experimentally in models that partially mimic bacteremia conditions in vitro and ex vivo. The present study demonstrates why AMPR-22 showed low hemolytic toxicity and this approach using an MD simulation would be helpful in the development of AMPs.


Asunto(s)
Bacteriemia , Proteínas de la Membrana , Proteínas Mitocondriales , Simulación de Dinámica Molecular , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Bacteriemia/metabolismo , Bacterias , Membrana Celular/metabolismo , Hemólisis , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/farmacología , Pruebas de Sensibilidad Microbiana , Proteínas Mitocondriales/química , Proteínas Mitocondriales/farmacología
4.
MethodsX ; 9: 101687, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35492212

RESUMEN

DNA interstrand cross-links (ICLs) are extremely deleterious DNA lesions, which can block different DNA transactions. A major step in ICL repair involves strand cleavage activities flanking the cross-linking site, also known as unhooking. The cleavage generates a single-stranded DNA remnant attached to the unbroken strand, often referred to as the unhooked ICL repair intermediates. The unhooked ICLs are substrates for specialized DNA polymerases, leading to the eventual restoration of the duplex DNA structure. Although these repair events have been outlined, the understanding of molecular details of the repair pathways has been hindered by the difficulty of preparing structurally defined ICL repair intermediates. Here, we present a straightforward method to prepare model ICL repair intermediates derived from a ubiquitous type of endogenous DNA modification, abasic (AP) sites. AP-derived ICLs have emerged as an important type of endogenous ICLs. We developed the method based on commercially available materials without the requirement of synthetic chemistry expertise. The method is expected to be accessible to any interested labs in the DNA repair community. • The method exploits the alkaline lability of ribonucleotides and uses designer oligonucleotides to create ICL repair intermediates with varying lengths of the unhooked strand. • Strand cleavage at ribonucleotides is achieved using NaOH, which avoids the potential for incomplete digestion during enzymatic workup due to specific substrate structures. • The method is grounded on the high cross-linking yield between an AP lesion and a nucleotide analog, 2-aminopurine, via reductive amination, developed by Gates and colleagues.

5.
Res Microbiol ; 173(3): 103917, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34890712

RESUMEN

Stenotrophomonas maltophilia intrinsic resistance to ß-lactams is mediated by two chromosomal ß-lactamases, L1 and L2, whose induction depends on AmpR. Its quorum sensing (QS) signal, the diffusible signal factor (DSF), has a positive role in biofilm production, virulence and induction of ß-lactamases. We hypothesized that AmpR has a role in virulence, biofilm production and QS system. Studies were done on S. maltophilia K279a, K279a ampRFS (ampR deficient mutant) and K279aM11 (constitutively active AmpR mutant). K279a ampRFS showed the highest biofilm biomass, thickness and 3D organization. Conversely, K279aM11 was the least efficient biofilm former strain. qRT-PCR showed that spgM, related to biofilm formation and virulence, was upregulated in K279a ampRFS and downregulated in K279aM11. A constitutively active AmpR led to a reduction of DSF production, while K279a ampRFS was the highest producer. Consequently, qRT-PCR showed that AmpR negatively regulated rpfF expression. K279a ampRFS presented the highest oxidative stress resistance, overexpressed sodA gene and showed the highest virulence in the Galleria mellonella killing assay. This is the first evidence of the function of AmpR as a dual regulator in S. maltophilia with a positive role in ß-lactam resistance and a negative role in DSF production, biofilm formation, oxidative stress resistance and virulence.


Asunto(s)
Stenotrophomonas maltophilia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Stenotrophomonas maltophilia/genética , Virulencia , Resistencia betalactámica/genética , beta-Lactamasas/genética
6.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361008

RESUMEN

The emergence of multidrug-resistant (MDR) bacteria through the abuse and long-term use of antibiotics is a serious health problem worldwide. Therefore, novel antimicrobial agents that can cure an infection from MDR bacteria, especially gram-negative bacteria, are urgently needed. Antimicrobial peptides, part of the innate immunity system, have been studied to find bactericidal agents potent against MDR bacteria. However, they have many problems, such as restrained systemic activity and cytotoxicity. In a previous study, we suggested that the K58-R78 domain of Romo1, a mitochondrial protein encoded by the nucleus, was a promising treatment candidate for sepsis caused by MDR bacteria. Here, we performed sequence optimization to enhance the antimicrobial activity of this peptide and named it as AMPR-22 (antimicrobial peptide derived from Romo1). It showed broad-spectrum antimicrobial activity against 17 sepsis-causing bacteria, including MDR strains, by inducing membrane permeabilization. Moreover, treatment with AMPR-22 enabled a remarkable survival rate in mice injected with MDR bacteria in a murine model of sepsis. Based on these results, we suggest that AMPR-22 could be prescribed as a first-line therapy (prior to bacterial identification) for patients diagnosed with sepsis.


Asunto(s)
Proteínas de la Membrana/química , Proteínas Mitocondriales/química , Fragmentos de Péptidos/uso terapéutico , Proteínas Citotóxicas Formadoras de Poros/uso terapéutico , Sepsis/tratamiento farmacológico , Animales , Células Cultivadas , Farmacorresistencia Bacteriana , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacología , Dominios Proteicos , Sepsis/microbiología
7.
Animals (Basel) ; 10(11)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33171912

RESUMEN

The emergence of antimicrobial resistant (AMR) strains of Morganella morganii is increasingly being recognized. Recently, we reported a fatal M. morganii infection in a captive bottlenose dolphin (Tursiops truncatus) bred at a dolphinarium in South Korea. According to our subsequent investigations, the isolated M. morganii strain KC-Tt-01 exhibited extensive resistance to third-generation cephalosporins which have not been reported in animals. Therefore, in the present study, the genome of strain KC-Tt-01 was sequenced, and putative virulence and AMR genes were investigated. The strain had virulence and AMR genes similar to those of other M. morganii strains, including a strain that causes human sepsis. An amino-acid substitution detected at the 86th residue (Arg to Cys) of the protein encoded by ampR might explain the extended resistance to third-generation cephalosporins. These results indicate that the AMR M. morganii strain isolated from the captive dolphin has the potential to cause fatal zoonotic infections with antibiotic treatment failure due to extended drug resistance, and therefore, the management of antibiotic use and monitoring of the emergence of AMR bacteria are urgently needed in captive cetaceans for their health and conservation.

8.
mBio ; 11(2)2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32291307

RESUMEN

To overcome increasing bacterial resistance to conventional antibiotics, many antimicrobial peptides (AMPs) derived from host defense proteins have been developed. However, there are considerable obstacles to their application to systemic infections because of their low bioavailability. In the present study, we developed an AMP derived from Romo1 (AMPR-11) that exhibits a broad spectrum of antimicrobial activity. AMPR-11 showed remarkable efficacy against sepsis-causing bacteria, including multidrug-resistant strains, with low toxicity in a murine model of sepsis after intravenous administration. It seems that AMPR-11 disrupts bacterial membranes by interacting with cardiolipin and lipid A. From the results of this study, we suggest that AMPR-11 is a new class of agent for overcoming low efficacy in the intravenous application of AMPs and is a promising candidate to overcome multidrug resistance.IMPORTANCE Abuse of antibiotics often leads to increase of multidrug-resistant (MDR) bacteria, which threatens the life of human beings. To overcome threat of antibiotic resistance, scientists are developing a novel class of antibiotics, antimicrobial peptides, that can eradicate MDR bacteria. Unfortunately, these antibiotics have mainly been developed to cure bacterial skin infections rather than others, such as life-threatening sepsis. Major pharmaceutical companies have tried to develop antiseptic drugs; however, they have not been successful. Here, we report that AMPR-11, the antimicrobial peptide (AMP) derived from mitochondrial nonselective channel Romo1, has antimicrobial activity against Gram-positive and Gram-negative bacteria comprising many clinically isolated MDR strains. Moreover, AMPR-11 increased the survival rate in a murine model of sepsis caused by MDR bacteria. We propose that AMPR-11 could be a novel antiseptic drug candidate with a broad antimicrobial spectrum to overcome MDR bacterial infection.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/uso terapéutico , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple , Proteínas de la Membrana/uso terapéutico , Proteínas Mitocondriales/uso terapéutico , Sepsis/tratamiento farmacológico , Administración Intravenosa , Animales , Antiinfecciosos/uso terapéutico , Membrana Externa Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Modelos Animales de Enfermedad , Células HeLa , Humanos , Masculino , Proteínas de la Membrana/química , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Proteínas Mitocondriales/química
9.
Mol Biol Evol ; 37(4): 1179-1192, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31670785

RESUMEN

Protein structure is tightly intertwined with function according to the laws of evolution. Understanding how structure determines function has been the aim of structural biology for decades. Here, we have wondered instead whether it is possible to exploit the function for which a protein was evolutionary selected to gain information on protein structure and on the landscape explored during the early stages of molecular and natural evolution. To answer to this question, we developed a new methodology, which we named CAMELS (Coupling Analysis by Molecular Evolution Library Sequencing), that is able to obtain the in vitro evolution of a protein from an artificial selection based on function. We were able to observe with CAMELS many features of the TEM-1 beta-lactamase local fold exclusively by generating and sequencing large libraries of mutational variants. We demonstrated that we can, whenever a functional phenotypic selection of a protein is available, sketch the structural and evolutionary landscape of a protein without utilizing purified proteins, collecting physical measurements, or relying on the pool of natural protein variants.


Asunto(s)
Evolución Molecular Dirigida/métodos , Relación Estructura-Actividad , beta-Lactamasas/genética , Pliegue de Proteína , Análisis de Secuencia de ADN
10.
Protein Sci ; 29(3): 629-646, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31747090

RESUMEN

The history of modern medicine cannot be written apart from the history of the antibiotics. Antibiotics are cytotoxic secondary metabolites that are isolated from Nature. The antibacterial antibiotics disproportionately target bacterial protein structure that is distinct from eukaryotic protein structure, notably within the ribosome and within the pathways for bacterial cell-wall biosynthesis (for which there is not a eukaryotic counterpart). This review focuses on a pre-eminent class of antibiotics-the ß-lactams, exemplified by the penicillins and cephalosporins-from the perspective of the evolving mechanisms for bacterial resistance. The mechanism of action of the ß-lactams is bacterial cell-wall destruction. In the monoderm (single membrane, Gram-positive staining) pathogen Staphylococcus aureus the dominant resistance mechanism is expression of a ß-lactam-unreactive transpeptidase enzyme that functions in cell-wall construction. In the diderm (dual membrane, Gram-negative staining) pathogen Pseudomonas aeruginosa a dominant resistance mechanism (among several) is expression of a hydrolytic enzyme that destroys the critical ß-lactam ring of the antibiotic. The key sensing mechanism used by P. aeruginosa is monitoring the molecular difference between cell-wall construction and cell-wall deconstruction. In both bacteria, the resistance pathways are manifested only when the bacteria detect the presence of ß-lactams. This review summarizes how the ß-lactams are sensed and how the resistance mechanisms are manifested, with the expectation that preventing these processes will be critical to future chemotherapeutic control of multidrug resistant bacteria.


Asunto(s)
Antibacterianos/farmacología , Pared Celular/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , beta-Lactamas/farmacología , Antibacterianos/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Bacterias Gramnegativas/citología , Bacterias Grampositivas/citología , Pruebas de Sensibilidad Microbiana , beta-Lactamas/química
11.
Int J Food Microbiol ; 301: 19-26, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31071501

RESUMEN

The increasing antimicrobial resistance (AMR) among pathogenic and opportunistic pathogenic microorganisms is one of the main global public health problems. The consumption of food contaminated with such bacteria (ARB), especially of raw products, might result in the direct acquisition of ARB and in a spread of resistant bacteria along the food chain. The aim of the study was to characterize the antimicrobial susceptibility of potentially extended spectrum ß-lactamase (ESBL) producing or AmpC resistant Enterobacteriaceae isolated from the surface of 147 muskmelons from wholesale and retail. A phenotypic analysis was carried out by using minimum inhibitory concentration (MIC) test strips for ESBL detection and MIC susceptibility plates against 14 antimicrobials. Furthermore, ESBL genes, sul-genes and plasmid-mediated AmpC resistance were analyzed by real-time PCR. Additionally, a further insight in the AmpC resistance of isolates of the Enterobacter cloacae complex (ECC) was obtained by analyzing the sequence of the ampC regulatory region (n = 15). A total of 73 potentially resistant Enterobacteriaceae were isolated from 56 muskmelons. Of these, 15 isolates of the ECC were suspicious for ESBL/AmpC resistance, and eleven thereof were positive for the AmpC family EBC. Phenotypic analysis showed diminished susceptibility against "critically" and "highly important" antimicrobials, according to the WHO classification. Furthermore, divergence in the ampC regulatory region was detected between the 15 isolates. These findings highlight the important role that raw produce might play in the transmission of antimicrobial resistances along the food chain.


Asunto(s)
Antibacterianos/farmacología , Cucurbitaceae/microbiología , Farmacorresistencia Bacteriana/genética , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/genética , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Plásmidos/genética
12.
Gene ; 704: 25-30, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30980942

RESUMEN

Yersinia enterocolitica strains produce two chromosomal ß­lactamases, BlaA - a constitutively produced penicillinase, and BlaB - an inducible "AmpC-type" cephalosporinase. As in other members of Enterobacteriaceae, expression of ampC in Y. enterocolitica is regulated by the genes - ampR and ampD. The ampR encodes a transcriptional regulator which represses the expression of ampC and, ampD encodes a cytoplasmic N­acetyl­anhydromuramyl­l­alanine amidase which participates in recycling of peptidoglycan. Exposure of bacteria to antibiotics like imipenem and cefoxitin results in generation and accumulation of large quantities of muropeptides in cytoplasm which is beyond the recycling capability of AmpD. These muropeptides bind to AmpR, converting it into an activator of ampC expression (ampC de-repression). Earlier studies from our laboratory indicated that instead of BlaB, Y. enterocolitica biotype 1A strains produced a "BlaB-like" enzyme which was non-heterogeneous and showed a differential expression when induced with imipenem. The detection of "BlaB-like" cephalosporinase which was also induced differentially in Y. enterocolitica biotype 1A strains presented an opportunity to discern newer mechanisms, if any, which may underlie inducible expression of "AmpC-type" cephalosporinases. Thus, the objective of the present study was to understand the role of ampR and ampD in regulating differential expression of "BlaB-like" cephalosporinases in biotype 1A strains. Analysis of promoters and amino acid sequences of AmpR revealed that these were conserved in all strains of biotype 1A. Analysis of AmpD amino acid sequences revealed that five variants of AmpD were present which did not contribute to hyper-inducible production of "BlaB-like" enzyme. In-silico prediction of the mRNA secondary structures of ampD revealed significant differences, which might have affected the rate of translation of ampD and accumulation of un-recycled muropeptides inside the cell leading to hyper production of "BlaB-like" cephalosporinases in some Y. enterocolitica biotype 1A strains. The findings provide newer insights to our understanding of the mechanisms underlying regulation of expression of "AmpC-type" ß­lactamases.


Asunto(s)
Proteínas Bacterianas/genética , Cefalosporinasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/genética , Yersinia enterocolitica/genética , Clonación Molecular , Inducción Enzimática/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Homología de Secuencia , Yersinia enterocolitica/clasificación , Yersinia enterocolitica/enzimología , beta-Lactamasas/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-29021974

RESUMEN

Yersinia enterocolitica encodes a chromosomal AmpC ß-lactamase under the regulation of the classical ampR-ampC system. To obtain a further understanding to the role of low-molecular-mass penicillin-binding proteins (LMM PBPs) including PBP4, PBP5, PBP6, and PBP7, as well as NagZ and AmpR in ampC regulation of Y. enterocolitica, series of single/multiple mutant strains were systematically constructed and the ampC expression levels were determined by luxCDABE reporter system, reverse transcription-PCR (RT-PCR) and ß-lactamase activity test. Sequential deletion of PBP5 and other LMM PBPs result in a continuously growing of ampC expression level, the ß-lactamse activity of quadruple deletion strain YEΔ4Δ5Δ6Δ7 (pbp4, pbp5, pbp6, and pbp7 inactivated) is approached to the YEΔD123 (ampD1, ampD2, and ampD3 inactivated). Deletion of nagZ gene caused two completely different results in YEΔD123 and YEΔ4Δ5Δ6Δ7, NagZ is indispensable for YEΔ4Δ5Δ6Δ7 ampC derepression phenotype but dispensable for YEΔD123. AmpR is essential for ampC hyperproduction in these two types of strains, inactivation of AmpR notable reduced the ampC expression level in both YEΔD123 and YEΔ4Δ5Δ6Δ7.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas de Unión a las Penicilinas/fisiología , Yersinia enterocolitica/metabolismo , beta-Lactamasas/fisiología , Acetilglucosaminidasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/genética , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Pruebas de Sensibilidad Microbiana , Mutación , N-Acetil Muramoil-L-Alanina Amidasa , Proteínas de Unión a las Penicilinas/genética , Regiones Promotoras Genéticas , Yersinia enterocolitica/enzimología , Yersinia enterocolitica/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
14.
mSphere ; 2(4)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28808689

RESUMEN

CFE-1 is a unique plasmid-encoded AmpC ß-lactamase with the regulator gene ampR. It imparts high resistance to most cephalosporins with constitutive high-level ß-lactamase activity. Here, the ß-lactamase activities and expression levels of ampC with or without ampR were investigated. Results suggested that the resistance of CFE-1 to cephalosporins is caused by a substitution in AmpR, in which the Asp at position 135 is modified to Ala to allow the constitutive high-level expression (derepression) of ampC.

15.
Crit Rev Biochem Mol Biol ; 52(5): 503-542, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28644060

RESUMEN

The lytic transglycosylases (LTs) are bacterial enzymes that catalyze the non-hydrolytic cleavage of the peptidoglycan structures of the bacterial cell wall. They are not catalysts of glycan synthesis as might be surmised from their name. Notwithstanding the seemingly mundane reaction catalyzed by the LTs, their lytic reactions serve bacteria for a series of astonishingly diverse purposes. These purposes include cell-wall synthesis, remodeling, and degradation; for the detection of cell-wall-acting antibiotics; for the expression of the mechanism of cell-wall-acting antibiotics; for the insertion of secretion systems and flagellar assemblies into the cell wall; as a virulence mechanism during infection by certain Gram-negative bacteria; and in the sporulation and germination of Gram-positive spores. Significant advances in the mechanistic understanding of each of these processes have coincided with the successive discovery of new LTs structures. In this review, we provide a systematic perspective on what is known on the structure-function correlations for the LTs, while simultaneously identifying numerous opportunities for the future study of these enigmatic enzymes.


Asunto(s)
Bacterias/enzimología , Pared Celular/enzimología , Glicosiltransferasas/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas , Peptidoglicano/metabolismo
16.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-852483

RESUMEN

Objective To establish a stable and rapid separation and purification method for Astragalus membranaceus (Am) pathogenesis-related protein-10 (AmPR-10) using an automatic intelligent protein purification system AKTA Avant 25, and analyze its physiochemical and biological activity. Methods Am was extracted by Tris-HCl buffer. The crude extract was captured by anion exchange chromatography, and finely separated by hydrophobic chromatography and gel filtration chromatography. The relative molecular weight of AmPR-10 was measured by MALDI-TOF/TOF mass spectrometry, the protein identification was determined by mass spectrometry and MS/MS Ion Search, the glycoprotein identification was estimated by periodic acid-Schiff method, and the ribonuclease activity and effect factors were analyzed by agarose gel electrophoresis. Results The electrophoretically pure AmPR-10 was obtained by three-step purification of Q Sepharose Fast Flow, Butyl Sepharose High Performance and SuperdexTM 75 10/300 GL from the crude extraction. The relative molecular weight of AmPR-10 was 16 801. AmPR-10 was highly homologous to PR-10 and has no carbohydrate chains. Incubated at 56 ℃ for 30 min, AmPR-10 exhibited significant ribonuclease activity to total RNA of mammalian cells. The activity was insensitive to NaCl, pH value and mental ions, and weekly inhibited by 0.5 mol/L NaCl, pH 9.0, Mg2+ and Co2+. The activity was the same at EDTA as high as 20 mmol/L. Conclusion The three-step method of exchange chromatography-hydrophobic chromatography-gel filtration chromatography, a stable and rapid separation and purification method of AmPR-10, can be applied for other Chinese herbs. AmPR-10 might play an important role in resistance against virus.

17.
J Biol Chem ; 290(5): 2630-43, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25480792

RESUMEN

Inducible expression of chromosomal AmpC ß-lactamase is a major cause of ß-lactam antibiotic resistance in the Gram-negative bacteria Pseudomonas aeruginosa and Enterobacteriaceae. AmpC expression is induced by the LysR-type transcriptional regulator (LTTR) AmpR, which activates ampC expression in response to changes in peptidoglycan (PG) metabolite levels that occur during exposure to ß-lactams. Under normal conditions, AmpR represses ampC transcription by binding the PG precursor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide. When exposed to ß-lactams, however, PG catabolites (1,6-anhydroMurNAc-peptides) accumulate in the cytosol, which have been proposed to competitively displace UDP-MurNAc-pentapeptide from AmpR and convert it into an activator of ampC transcription. Here we describe the molecular interactions between AmpR (from Citrobacter freundii), its DNA operator, and repressor UDP-MurNAc-pentapeptide. Non-denaturing mass spectrometry revealed AmpR to be a homotetramer that is stabilized by DNA containing the T-N11-A LTTR binding motif and revealed that it can bind four repressor molecules in an apparently stepwise manner. A crystal structure of the AmpR effector-binding domain bound to UDP-MurNAc-pentapeptide revealed that the terminal D-Ala-D-Ala motif of the repressor forms the primary contacts with the protein. This observation suggests that 1,6-anhydroMurNAc-pentapeptide may convert AmpR into an activator of ampC transcription more effectively than 1,6-anhydroMurNAc-tripeptide (which lacks the D-Ala-D-Ala motif). Finally, small angle x-ray scattering demonstrates that the AmpR·DNA complex adopts a flat conformation similar to the LTTR protein AphB and undergoes only a slight conformational change when binding UDP-MurNAc-pentapeptide. Modeling the AmpR·DNA tetramer bound to UDP-MurNAc-pentapeptide predicts that the UDP-MurNAc moiety of the repressor participates in modulating AmpR function.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dipéptidos/química , Dipéptidos/metabolismo , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , beta-Lactamasas/metabolismo , Peptidoglicano/metabolismo , Unión Proteica , Dispersión del Ángulo Pequeño , Uridina Difosfato Ácido N-Acetilmurámico/química , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo
18.
Res Microbiol ; 165(8): 612-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25229604

RESUMEN

Xanthomonas campestris pv. campestris expresses a chromosomally encoded class A ß-lactamase Blaxc. Basal expression and induction of blaxc require the transcriptional factor AmpRxc and the peptidoglycan-monomers permease AmpGxc. NagZ is a ß-GlcNAcase which cleaves GlcNAc-anhMurNAc peptides (peptidoglycan-monomers) to generate anhMurNAc-peptides. In many bacteria, anhMurNAc-peptides act as activation ligands for AmpR. Nevertheless, the role of NagZ in ß-lactamase induction differs among species. In this paper, we studied the roles of nagZxc in the regulation of blaxc and pathogenicity in X. campestris pv. campestris. Our data showed that cells lacking nagZxc dramatically reduced the basal expression and induction of blaxc, suggesting that anhMurNAc-peptides, products of NagZxc, are required for blaxc expression regardless of the presence or absence of inducers. Expression of blaxc is regulated via an ampG-nagZ-ampR pathway. Pathogenicity assay demonstrated that an ampGxc mutant excited more severe symptoms than the wild-type; on the contrary, the nagZxc mutant became less virulent. To our knowledge, this is the first demonstration of a link between the ampG or nagZ defects and the pathogenicity in a plant pathogen.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Xanthomonas campestris/enzimología , Xanthomonas campestris/genética , beta-Lactamasas/biosíntesis , beta-N-Acetilhexosaminidasas/metabolismo , Proteínas Bacterianas , Brassica/microbiología , Técnicas de Inactivación de Genes , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Virulencia , Xanthomonas campestris/patogenicidad , beta-N-Acetilhexosaminidasas/genética
19.
J Proteomics ; 96: 328-342, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24291602

RESUMEN

Pseudomonas aeruginosa is well known for its antibiotic resistance and intricate regulatory network, contributing to its success as an opportunistic pathogen. This study is an extension of our transcriptomic analyses (microarray and RNA-Seq) to understand the global changes in PAO1 upon deleting a gene encoding a transcriptional regulator AmpR, in the presence and absence of ß-lactam antibiotic. This study was performed under identical conditions to explore the proteome profile of the ampR deletion mutant (PAOΔampR) using LTQ-XL mass spectrometry. The proteomic data identified ~53% of total PAO1 proteins and expanded the master regulatory role of AmpR in determining antibiotic resistance and multiple virulence phenotypes in P. aeruginosa. AmpR proteome analysis identified 853 AmpR-dependent proteins, which include 102 transcriptional regulators and 21 two-component system proteins. AmpR also regulates cyclic di-GMP phosphodiesterases (PA4367, PA4969, PA4781) possibly affecting major virulence systems. Phosphoproteome analysis also suggests a significant role for AmpR in Ser, Thr and Tyr phosphorylation. These novel mechanisms of gene regulation were previously not associated with AmpR. The proteome analysis also identified many unannotated and misannotated ORFs in the P. aeruginosa genome. Thus, our data sheds light on important virulence regulatory pathways that can potentially be exploited to deal with P. aeruginosa infections. BIOLOGICAL SIGNIFICANCE: The AmpR proteome data not only confirmed the role of AmpR in virulence and resistance to multiple antibiotics, but also expanded the perimeter of AmpR regulon. The data presented here points to the role of AmpR in regulating cyclic di-GMP levels and phosphorylation of Ser, Thr and Tyr, adding another dimension to the regulatory functions of AmpR. We also identify some previously unannotated/misannotated ORFs in the P. aeruginosa genome, indicating the limitations of existing ORF analyses software. This study will contribute towards understanding complex genetic organization of P. aeruginosa. Whole genome proteomic picture of regulators at higher nodal positions in the regulatory network will not only help us link various virulence phenotypes but also design novel therapeutic strategies.


Asunto(s)
3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Lectura Abierta/fisiología , Proteoma/metabolismo , Regulón/fisiología , 3',5'-GMP Cíclico Fosfodiesterasas/genética , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana , Espectrometría de Masas , Fosforilación/fisiología , Proteoma/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA