Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Genet ; 15: 1462463, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100076

RESUMEN

[This corrects the article DOI: 10.3389/fgene.2024.1396530.].

2.
Neurosci Biobehav Rev ; 164: 105824, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39047928

RESUMEN

I believe consciousness is a property of advanced nervous systems, and as such a product of evolution. Thus, to understand consciousness we need to describe the trajectory leading to its evolution and the selective advantages conferred. A deeper understanding of the neurology would be a significant contribution, but other advanced functions, such as hearing and vision, are explained with a comparable lack of detailed knowledge of the brain processes responsible. In this paper, I try to add details and credence to a previously suggested, evolution-based model of consciousness. According to this model, the feature started to evolve in early amniotes (reptiles, birds, and mammals) some 320 million years ago. The reason was the introduction of feelings as a strategy for making behavioral decisions.


Asunto(s)
Evolución Biológica , Estado de Conciencia , Estado de Conciencia/fisiología , Humanos , Animales , Encéfalo/fisiología
3.
Genetics ; 228(1)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39044674

RESUMEN

The genes encoding ribosomal RNA are highly conserved across life and in almost all eukaryotes are present in large tandem repeat arrays called the rDNA. rDNA repeat unit size is conserved across most eukaryotes but has expanded dramatically in mammals, principally through the expansion of the intergenic spacer region that separates adjacent rRNA coding regions. Here, we used long-read sequence data from representatives of the major amniote lineages to determine where in amniote evolution rDNA unit size increased. We find that amniote rDNA unit sizes fall into two narrow size classes: "normal" (∼11-20 kb) in all amniotes except monotreme, marsupial, and eutherian mammals, which have "large" (∼35-45 kb) sizes. We confirm that increases in intergenic spacer length explain much of this mammalian size increase. However, in stark contrast to the uniformity of mammalian rDNA unit size, mammalian intergenic spacers differ greatly in sequence. These results suggest a large increase in intergenic spacer size occurred in a mammalian ancestor and has been maintained despite substantial sequence changes over the course of mammalian evolution. This points to a previously unrecognized constraint on the length of the intergenic spacer, a region that was thought to be largely neutral. We finish by speculating on possible causes of this constraint.


Asunto(s)
Evolución Molecular , Mamíferos , Animales , Mamíferos/genética , ADN Espaciador Ribosómico/genética , Humanos , ADN Ribosómico/genética , Genes de ARNr , Filogenia
4.
Dev Biol ; 515: 169-177, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39029569

RESUMEN

In order to address a biological explanation for the different regenerative abilities present among animals, a new evolutionary speculation is presented. It is hypothesized that epigenetic mechanisms have lowered or erased regeneration during the evolution of terrestrial invertebrates and vertebrates. The hypothesis indicates that a broad regeneration can only occur in marine or freshwater conditions, and that life on land does not allow for high regeneration. This is due to the physical, chemical and microbial conditions present in the terrestrial environment with respect to those of the aquatic environment. The present speculation provides examples of hypothetic evolutionary animal lineages that colonized the land, such as parasitic annelids, terrestrial mollusks, arthropods and amniotes. These are the animals where regeneration is limited or absent and their injuries are only repaired through limited healing or scarring. It is submitted that this loss derived from changes in the developmental gene pathways sustaining regeneration in the aquatic environment but that cannot be expressed on land. Once regeneration was erased in terrestrial species, re-adaptation to freshwater niches could not reactivate the previously altered gene pathways that determined regeneration. Therefore a broad regeneration was no longer possible or became limited and heteromorphic in the derived, extant animals. Only in few cases extensive healing abilities or regengrow, a healing process where regeneration overlaps with somatic growth, have evolved among arthropods and amniotes. The present paper is an extension of previous speculations trying to explain in biological terms the different regenerative abilities present among metazoans.


Asunto(s)
Evolución Biológica , Epigénesis Genética , Regeneración , Animales , Regeneración/genética , Regeneración/fisiología , Invertebrados/genética , Invertebrados/fisiología , Vertebrados/genética
5.
Front Genet ; 15: 1396530, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903758

RESUMEN

The karyotype of an organism is the set of gross features that characterize the way the genome is packaged into separate chromosomes. It has been known for decades that different taxonomic groups often have distinct karyotypic features, but whether selective forces act to maintain these differences over evolutionary timescales is an open question. In this paper we analyze a database of karyotype features and sperm head morphology in 103 mammal species with spatulate sperm heads and 90 sauropsid species (birds and non-avian reptiles) with vermiform heads. We find that mammal species with a larger head area have more chromosomes, while sauropsid species with longer heads have a wider range of chromosome lengths. These results remain significant after controlling for genome size, so sperm head morphology is the relevant variable. This suggest that post-copulatory sexual selection, by acting on sperm head shape, can influence genome architecture.

6.
Life (Basel) ; 13(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36983793

RESUMEN

Transposable elements (TEs) constitute a considerable fraction of eukaryote genomes representing a major source of genetic variability. We describe two DNA sequences isolated in the lizard Zootoca vivipara, here named Zv516 and Zv817. Both sequences are single-copy nuclear sequences, including a truncation of two transposable elements (TEs), SINE Squam1 in Zv516 and a Tc1/Mariner-like DNA transposon in Zv817. FISH analyses with Zv516 showed the occurrence of interspersed signals of the SINE Squam1 sequence on all chromosomes of Z. vivipara and quantitative dot blot indicated that this TE is present with about 4700 copies in the Z. vivipara genome. FISH and dot blot with Zv817 did not produce clear hybridization signals. Bioinformatic analysis showed the presence of active SINE Squam 1 copies in the genome of different lacertids, in different mRNAs, and intronic and coding regions of various genes. The Tc1/Mariner-like DNA transposon occurs in all reptiles, excluding Sphenodon and Archosauria. Zv817 includes a trait of 284 bp, representing an amniote ultra-conserved element (UCE). Using amniote UCE homologous sequences from available whole genome sequences of major amniote taxonomic groups, we performed a phylogenetic analysis which retrieved Prototheria as the sister group of Metatheria and Eutheria. Within diapsids, Testudines are the sister group to Aves + Crocodylia (Archosauria), and Sphenodon is the sister group to Squamata. Furthermore, large trait regions flanking the UCE are conserved at family level.

7.
Epigenetics ; 18(1): 2139067, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36305095

RESUMEN

Epigenetic machinery contributes to gene regulation in eukaryotic species. However, the machinery including more than 600 epigenetic regulator (ER) genes responsible for reading, writing, and erasing histone modifications and DNA modifications remains largely uncharacterized across species. We compile a comprehensive list of ERs based on an evolutionary analysis across 23 species, which is the most comprehensive ER list in various species until recently. We further perform comparative transcriptomic analyses across different tissues in humans, mice, as well as other amniote species. We observe a consistent tissue-of-origin expression specificity pattern of duplicated ER genes across species and suggest links between expression specificity and ER gene evolution as well as ER function. Additional analyses further suggest that ER duplication can generate tissue-specific ER genes with the same epigenetic substrates, which may be closely related to their regulatory specificity in tissue development. Our work can serve as a foundation to better comprehend the tissue-specific expression patterns of ER genes from an evolutionary perspective and also the functional implications of ERs in tissue-specific epigenetic regulation.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Humanos , Animales , Ratones , Regulación de la Expresión Génica , Perfilación de la Expresión Génica , Transcriptoma , Evolución Molecular
9.
Philos Trans R Soc Lond B Biol Sci ; 377(1865): 20210263, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36252211

RESUMEN

In amniotic vertebrates (birds, reptiles and mammals), an extraembryonic structure called the chorioallantoic membrane (CAM) functions as respiratory organ for embryonic development. The CAM is derived from fusion between two pre-existing membranes, the allantois, a hindgut diverticulum and a reservoir for metabolic waste, and the chorion which marks the embryo's external boundary. Modified CAM in eutherian mammals, including humans, gives rise to chorioallantoic placenta. Despite its importance, little is known about cellular and molecular mechanisms mediating CAM formation and maturation. In this work, using the avian model, we focused on the early phase of CAM morphogenesis when the allantois and chorion meet and initiate fusion. We report here that chicken chorioallantoic fusion takes place when the allantois reaches the size of 2.5-3.0 mm in diameter and in about 6 hours between E3.75 and E4. Electron microscopy and immunofluorescence analyses suggested that before fusion, in both the allantois and chorion, an epithelial-shaped mesothelial layer is present, which dissolves after fusion, presumably by undergoing epithelial-mesenchymal transition. The fusion process per se, however, is independent of allantoic growth, circulation, or its connection to the developing mesonephros. Mesoderm cells derived from the allantois and chorion can intermingle post-fusion, and chorionic ectoderm cells exhibit a specialized sub-apical intercellular interface, possibly to facilitate infiltration of allantois-derived vascular progenitors into the chorionic ectoderm territory for optimal oxygen transport. Finally, we investigated chorioallantoic fusion-like process in primates, with limited numbers of archived human and fresh macaque samples. We summarize the similarities and differences of CAM formation among different amniote groups and propose that mesothelial epithelial-mesenchymal transition mediates chorioallantoic fusion in most amniotic vertebrates. Further study is needed to clarify tissue morphogenesis leading to chorioallantoic fusion in primates. Elucidating molecular mechanisms regulating mesothelial integrity and epithelial-mesenchymal transition will also help understand mesothelial diseases in the adult, including mesothelioma, ovarian cancer and fibrosis. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.


Asunto(s)
Alantoides , Membrana Corioalantoides , Alantoides/metabolismo , Animales , Corion/metabolismo , Epitelio , Humanos , Mamíferos , Oxígeno/metabolismo
10.
Philos Trans R Soc Lond B Biol Sci ; 377(1865): 20210268, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36252225

RESUMEN

It is fascinating that the amnion and serosa/chorion, two extraembryonic (EE) tissues that are characteristic of the amniote vertebrates (mammals, birds and reptiles), have also independently evolved in insects. In this review, we offer the first detailed, macroevolutionary comparison of EE development and tissue biology across these animal groups. Some commonalities represent independent solutions to shared challenges for protecting the embryo (environmental assaults, risk of pathogens) and supporting its development, including clear links between cellular properties (e.g. polyploidy) and physiological function. Further parallels encompass developmental features such as the early segregation of the serosa/chorion compared to later, progressive differentiation of the amnion and formation of the amniotic cavity from serosal-amniotic folds as a widespread morphogenetic mode across species. We also discuss common developmental roles for orthologous transcription factors and BMP signalling in EE tissues of amniotes and insects, and between EE and cardiac tissues, supported by our exploration of new resources for global and tissue-specific gene expression. This highlights the degree to which general developmental principles and protective tissue features can be deduced from each of these animal groups, emphasizing the value of broad comparative studies to reveal subtle developmental strategies and answer questions that are common across species. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.


Asunto(s)
Amnios , Insectos , Amnios/metabolismo , Animales , Mamíferos , Morfogénesis/fisiología , Membrana Serosa/metabolismo , Factores de Transcripción/metabolismo
11.
Philos Trans R Soc Lond B Biol Sci ; 377(1865): 20210258, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36252226

RESUMEN

The amnion is an extraembryonic tissue that evolutionarily allowed embryos of all amniotes to develop in a transient and local aquatic environment. Despite the importance of this tissue, very little is known about its formation and its molecular characteristics. In this review, we have compared the basic organization of the extraembryonic membranes in amniotes and describe the two types of amniogenesis, folding and cavitation. We then zoom in on the atypical development of the amnion in mice that occurs via the formation of a single posterior amniochorionic fold. Moreover, we consolidate lineage tracing data to better understand the spatial and temporal origin of the progenitors of amniotic ectoderm, and visualize the behaviour of their descendants in the extraembryonic-embryonic junctional region. This analysis provides new insight on amnion development and expansion. Finally, using an online-available dataset of single-cell transcriptomics during the gastrulation period in mice, we provide bioinformatic analysis of the molecular signature of amniotic ectoderm and amniotic mesoderm. The amnion is a tissue with unique biomechanical properties that deserves to be better understood. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.


Asunto(s)
Amnios , Mesodermo , Animales , Gastrulación , Ratones
12.
PeerJ ; 10: e13866, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36132215

RESUMEN

Mesosaurs are the first secondarily aquatic amniotes and one of the most enigmatic clades of reptiles from the early Permian. They have long puzzled paleontologists with their unique morphologies: possessing an elongated skull with thin needle-like teeth, a long neck, large webbed hindlimbs, banana-shaped pachyosteosclerotic ribs, and a long tail. Here, we look at a large dataset of morphometric measurements from 270 mesosaur specimens in collections around the world. These measurements characterize skull, tooth, and limb proportions and their variation with size. This data presents evidence of surprising ontogenetic changes in these animals as well as new insights into their taxonomy. Our results support the recent hypothesis that Mesosaurus tenuidens is the only valid species within Mesosauridae and suggest that "Stereosternum tumidum" and "Brazilosaurus sanpauloensis" represent immature stages or incomplete specimens of Mesosaurus by showing that all three species occupy an incomplete portion of the overall size range of mesosaurs. Under the single-species hypothesis, we highlight a number of ontogenetic trends: (1) a reduction in skull length accompanied by an elongation of the snout within the skull, (2) an elongation of teeth, (3) a reduction in hind limb length, and (4) a reduction in manus length. Concurrent with these changes, we hypothesize that mesosaurs went through a progressive ecological shift during their growth, with juveniles being more common in shallow water deposits, whereas large adults are more frequent in pelagic sediments. These parallel changes suggest that mesosaurs underwent a diet and lifestyle transition during ontogeny, from an active predatory lifestyle as juveniles to a more filter-feeding diet as adults. We propose that this change in lifestyle and environments may have been driven by the pursuit of different food sources, but a better understanding of the Irati Sea fauna will be necessary to obtain a more definitive answer to the question of young mesosaur diet.


Asunto(s)
Cráneo , Diente , Animales , Cráneo/anatomía & histología , Reptiles/anatomía & histología , Cabeza , Dieta
13.
Elife ; 112022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35916372

RESUMEN

In humans and other mammals, germline mutations are more likely to arise in fathers than in mothers. Although this sex bias has long been attributed to DNA replication errors in spermatogenesis, recent evidence from humans points to the importance of mutagenic processes that do not depend on cell division, calling into question our understanding of this basic phenomenon. Here, we infer the ratio of paternal-to-maternal mutations, α, in 42 species of amniotes, from putatively neutral substitution rates of sex chromosomes and autosomes. Despite marked differences in gametogenesis, physiologies and environments across species, fathers consistently contribute more mutations than mothers in all the species examined, including mammals, birds, and reptiles. In mammals, α is as high as 4 and correlates with generation times; in birds and snakes, α appears more stable around 2. These observations are consistent with a simple model, in which mutations accrue at equal rates in both sexes during early development and at a higher rate in the male germline after sexual differentiation, with a conserved paternal-to-maternal ratio across species. Thus, α may reflect the relative contributions of two or more developmental phases to total germline mutations, and is expected to depend on generation time even if mutations do not track cell divisions.


Asunto(s)
Mutación de Línea Germinal , Hominidae , Animales , Aves/genética , División Celular/genética , Padre , Femenino , Hominidae/genética , Humanos , Masculino , Mamíferos/genética , Mutación , Cromosomas Sexuales
14.
Front Pharmacol ; 13: 838500, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35517822

RESUMEN

Human Quinone Reductase 2 (NQO2) is a pharmacological target and has appeared in numerous screening efforts as an off-target interactor with kinase-targeted drugs. However the cellular functions of NQO2 are not known. To gain insight into the potential cellular functions of NQO2, we have carried out a detailed evolutionary analysis. One of the most striking characteristics of NQO2 is that it uses conventional dihydronicotinamide cosubstrates, NADH and NADPH, extremely inefficiently, raising questions about an enzymatic function in cells. To characterize the ability of NQO2 to serve as an enzyme, the NQO2 gene was disrupted in HCT116 cells. These NQO2 knockouts along with the parental cells were used to demonstrate that cellular NQO2 is unable to catalyze the activation of the DNA cross-linking reagent, CB1954, without the addition of exogenous dihydronicotinamide riboside (NRH). To find whether the unusual cosubstrate specificity of NQO2 has been conserved in the amniotes, recombinant NQO2 from a reptile, Alligator mississippiensis, and a bird, Anas platyrhynchos, were cloned, purified, and their catalytic activity characterized. Like the mammalian enzymes, the reptile and bird NQO2 were efficient catalysts with the small and synthetic cosubstrate N-benzyl-1,4-dihydronicotinamide but were inefficient in their use of NADH and NADPH. Therefore, the unusual cosubstrate preference of NQO2 appears to be conserved throughout the amniotes; however, we found that NQO2 is not well-conserved in the amphibians. A phylogenetic analysis indicates that NQO1 and NQO2 diverged at the time, approximately 450 MYA, when tetrapods were beginning to evolve.

15.
PeerJ ; 9: e12574, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34909284

RESUMEN

Skeletal muscle mass, architecture and force-generating capacity are well known to scale with body size in animals, both throughout ontogeny and across species. Investigations of limb muscle scaling in terrestrial amniotes typically focus on individual muscles within select clades, but here this question was examined at the level of the whole limb across amniotes generally. In particular, the present study explored how muscle mass, force-generating capacity (measured by physiological cross-sectional area) and internal architecture (fascicle length) scales in the fore- and hindlimbs of extant mammals, non-avian saurians ('reptiles') and bipeds (birds and humans). Sixty species spanning almost five orders of magnitude in body mass were investigated, comprising previously published architectural data and new data obtained via dissections of the opossum Didelphis virginiana and the tegu lizard Salvator merianae. Phylogenetic generalized least squares was used to determine allometric scaling slopes (exponents) and intercepts, to assess whether patterns previously reported for individual muscles or functional groups were retained at the level of the whole limb, and to test whether mammals, reptiles and bipeds followed different allometric trajectories. In general, patterns of scaling observed in individual muscles were also observed in the whole limb. Reptiles generally have proportionately lower muscle mass and force-generating capacity compared to mammals, especially at larger body size, and bipeds exhibit strong to extreme positive allometry in the distal hindlimb. Remarkably, when muscle mass was accounted for in analyses of muscle force-generating capacity, reptiles, mammals and bipeds almost ubiquitously followed a single common scaling pattern, implying that differences in whole-limb force-generating capacity are principally driven by differences in muscle mass, not internal architecture. In addition to providing a novel perspective on skeletal muscle allometry in animals, the new dataset assembled was used to generate pan-amniote statistical relationships that can be used to predict muscle mass or force-generating capacity in extinct amniotes, helping to inform future reconstructions of musculoskeletal function in the fossil record.

16.
PeerJ ; 9: e12577, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966586

RESUMEN

Given a phylogenetic tree that includes only extinct, or a mix of extinct and extant taxa, where at least some fossil data are available, we present a method to compute the distribution of the extinction time of a given set of taxa under the Fossilized-Birth-Death model. Our approach differs from the previous ones in that it takes into account (i) the possibility that the taxa or the clade considered may diversify before going extinct and (ii) the whole phylogenetic tree to estimate extinction times, whilst previous methods do not consider the diversification process and deal with each branch independently. Because of this, our method can estimate extinction times of lineages represented by a single fossil, provided that they belong to a clade that includes other fossil occurrences. We assess and compare our new approach with a standard previous one using simulated data. Results show that our method provides more accurate confidence intervals. This new approach is applied to the study of the extinction time of three Permo-Carboniferous synapsid taxa (Ophiacodontidae, Edaphosauridae, and Sphenacodontidae) that are thought to have disappeared toward the end of the Cisuralian (early Permian), or possibly shortly thereafter. The timing of extinctions of these three taxa and of their component lineages supports the idea that the biological crisis in the late Kungurian/early Roadian consisted of a progressive decline in biodiversity throughout the Kungurian.

17.
R Soc Open Sci ; 8(9): 202145, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34540239

RESUMEN

Cranial morphology is remarkably varied in living amniotes and the diversity of shapes is thought to correspond with feeding ecology, a relationship repeatedly demonstrated at smaller phylogenetic scales, but one that remains untested across amniote phylogeny. Using a combination of morphometric methods, we investigate the links between phylogenetic relationships, diet and skull shape in an expansive dataset of extant toothed amniotes: mammals, lepidosaurs and crocodylians. We find that both phylogeny and dietary ecology have statistically significant effects on cranial shape. The three major clades largely partition morphospace with limited overlap. Dietary generalists often occupy clade-specific central regions of morphospace. Some parallel changes in cranial shape occur in clades with distinct evolutionary histories but similar diets. However, members of a given clade often present distinct cranial shape solutions for a given diet, and the vast majority of species retain the unique aspects of their ancestral skull plan, underscoring the limits of morphological convergence due to ecology in amniotes. These data demonstrate that certain cranial shapes may provide functional advantages suited to particular dietary ecologies, but accounting for both phylogenetic history and ecology can provide a more nuanced approach to inferring the ecology and functional morphology of cryptic or extinct amniotes.

18.
Mol Biol Evol ; 38(12): 5726-5734, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34463769

RESUMEN

Rhodopsin comprises an opsin attached to a retinal chromophore and is the only visual pigment conferring dim-light vision in vertebrates. On activation by photons, the retinal group becomes detached from the opsin, which is then inactive until it is recharged. Of all vertebrate species, those that dive face unique visual challenges, experiencing rapid decreases in light level and hunting in near darkness. Here, we combine sequence analyses with functional assays to show that the rhodopsin pigments of four divergent lineages of deep-diving vertebrates have undergone convergent increases in their retinal release rate. We compare gene sequences and detect parallel amino acids between penguins and diving mammals and perform mutagenesis to show that a single critical residue fully explains the observed increases in retinal release rate in both the emperor penguin and beaked whale. At the same time, we find that other shared sites have no significant effect on retinal release, implying that convergence does not always signify adaptive significance. We propose that accelerated retinal release confers rapid rhodopsin recharging, enabling the visual systems of diving species to adjust quickly to changing light levels as they descend through the water column. This contrasts with nocturnal species, where adaptation to darkness has been attributed to slower retinal release rates.


Asunto(s)
Rodopsina , Vertebrados , Animales , Oscuridad , Mamíferos/metabolismo , Retina/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Vertebrados/genética , Vertebrados/metabolismo
19.
Philos Trans R Soc Lond B Biol Sci ; 376(1833): 20200108, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34304592

RESUMEN

Sex chromosomes are a great example of a convergent evolution at the genomic level, having evolved dozens of times just within amniotes. An intriguing question is whether this repeated evolution was random, or whether some ancestral syntenic blocks have significantly higher chance to be co-opted for the role of sex chromosomes owing to their gene content related to gonad development. Here, we summarize current knowledge on the evolutionary history of sex determination and sex chromosomes in amniotes and evaluate the hypothesis of non-random emergence of sex chromosomes. The current data on the origin of sex chromosomes in amniotes suggest that their evolution is indeed non-random. However, this non-random pattern is not very strong, and many syntenic blocks representing putatively independently evolved sex chromosomes are unique. Still, repeatedly co-opted chromosomes are an excellent model system, as independent co-option of the same genomic region for the role of sex chromosome offers a great opportunity for testing evolutionary scenarios on the sex chromosome evolution under the explicit control for the genomic background and gene identity. Future studies should use these systems more to explore the convergent/divergent evolution of sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.


Asunto(s)
Evolución Biológica , Aves/genética , Mamíferos/genética , Reptiles/genética , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo , Animales , Aves/crecimiento & desarrollo , Mamíferos/crecimiento & desarrollo , Reptiles/crecimiento & desarrollo
20.
Elife ; 102021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33648627

RESUMEN

The production of blood cells (haematopoiesis) occurs in the limb bones of most tetrapods but is absent in the fin bones of ray-finned fish. When did long bones start producing blood cells? Recent hypotheses suggested that haematopoiesis migrated into long bones prior to the water-to-land transition and protected newly-produced blood cells from harsher environmental conditions. However, little fossil evidence to support these hypotheses has been provided so far. Observations of the humeral microarchitecture of stem-tetrapods, batrachians, and amniotes were performed using classical sectioning and three-dimensional synchrotron virtual histology. They show that Permian tetrapods seem to be among the first to exhibit a centralised marrow organisation, which allows haematopoiesis as in extant amniotes. Not only does our study demonstrate that long-bone haematopoiesis was probably not an exaptation to the water-to-land transition but it sheds light on the early evolution of limb-bone development and the sequence of bone-marrow functional acquisitions.


For many aquatic creatures, the red blood cells that rush through their bodies are created in organs such as the liver or the kidney. In most land vertebrates however, blood-cell production occurs in the bone marrow. There, the process is shielded from the ultraviolet light or starker temperature changes experienced out of the water. It is possible that this difference evolved long before the first animal with a backbone crawled out of the aquatic environment and faced new, harsher conditions: yet very little fossil evidence exists to support this idea. A definitive answer demands a close examination of fossils from the water-to-land transition including lobe-finned fish and early limbed vertebrates. To support the production of red blood cells, their fin and limb bones would have needed an internal cavity that can house a specific niche that opens onto a complex network of blood vessels. To investigate this question, Estefa et al. harnessed the powerful x-ray beam produced by the European Synchrotron Radiation Facility and imaged the fin and limb bones from fossil lobe-finned fish and early limbed vertebrates. The resulting three-dimensional structures revealed spongy long bones with closed internal cavities where the bone marrow cells were probably entrapped. These could not have housed the blood vessels needed to create an environment that produces red blood cells. In fact, the earliest four-legged land animals Estefa et al. found with an open marrow cavity lived 60 million years after vertebrates had first emerged from the aquatic environment, suggesting that blood cells only began to be created in bone marrow after the water-to-land transition. Future work could help to pinpoint exactly when the change in blood cell production occurred, helping researchers to identify the environmental and biological factors that drove this change.


Asunto(s)
Evolución Biológica , Médula Ósea/anatomía & histología , Huesos/anatomía & histología , Peces/anatomía & histología , Animales , Extremidades , Fósiles , Placa de Crecimiento , Hematopoyesis , Sincrotrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA