Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 672: 675-687, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38865881

RESUMEN

Developing a straightforward and general strategy to regulate the surface microenvironment of a carbon matrix enriched with N/B motifs for efficient atomic utilization and electronic state of metal sites in bifunctional hydrogen production via ammonia-borane hydrolysis (ABH) and water electrolysis is a persistent challenge. Herein, we present a simple, green, and universal approach to fabricate B/N co-doped porous carbons using ammonia-borane (AB) as a triple functional agent, eliminating the need for hazardous and explosive functional agents and complicated procedures. The pyrolysis of AB induces the regulation of the surface microenvironment of the carbon matrix, leading to the formation of abundant surface functional groups, defects, and pore structures. This regulation enhances the efficiency of atom utilization and the electronic state of the active component, resulting in improved bifunctional hydrogen evolution. Among the catalysts, B/N co-doped vulcan carbon (Ru/BNC) with 2.1 wt% Ru loading demonstrates the highest performance in catalytic hydrogen production from ABH, achieving an ultrahigh turnover frequency of 1854 min-1 (depending on the dispersion of Ru). Furthermore, this catalyst shows remarkable electrochemical activity for hydrogen evolution in alkaline water electrolysis with a low overpotential of 31 mV at 10 mA cm-2. The present study provides a simple, green, and universal method to regulate the surface microenvironment of various carbons with B/N modulators, thereby adjusting the atomic utilization and electronic state of active metals for enhanced bifunctional hydrogen evolution.

2.
J Colloid Interface Sci ; 671: 543-552, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38820839

RESUMEN

Designing and constructing the active center of Ru-based catalysts is the key to efficient hydrolysis of ammonia borane (NH3BH3, AB) for hydrogen production. Herein, V-doped Ru/Ti2.5V0.5C2 dual-active center catalysts were synthesized, showing excellent catalytic ability for AB hydrolysis. The corresponding turnover frequency value was 1072 min-1 at 298 K, and the hydrolysis rate rB of AB was 235 × 103 mL·min-1·gRu-1. X-ray photoelectron spectroscopy results indicated that the interaction between V-doped Ti3C2 and catalytic metal Ru transfers electrons from Ti to Ru, resulting in electron-rich Ru species. According to density functional theory calculations, the activation energy and reaction dissociation energy of the reactants AB and H2O on V-doped catalysts were lower than those of Ru/Ti3C2, thus optimizing the catalytic kinetics of AB hydrolysis. The modification strategy of V-doped Ti3C2 provides a new pathway for the development of high-performance catalysts for AB hydrolysis.

3.
Small Methods ; : e2400376, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801007

RESUMEN

Ammonia borane (AB) has emerged as a promising chemical hydrogen storage material. The development of efficient, stable, and cost-effective catalysts for AB hydrolysis is the key to achieving hydrogen energy economy. Here, cobalt phosphide (CoP) is used to anchor single-atom Pt species, acting as robust catalysts for hydrogen generation from AB hydrolysis. Thanks to the high Pt utilization and the synergy between CoP and Pt species, the optimized Pt/CoP-100 catalyst exhibits an unprecedented hydrogen generation rate, giving a record turnover frequency (TOF) value of 39911 mo l H 2 mo l Pt - 1 mi n - 1 ${\mathrm{mo}}{{{\mathrm{l}}}_{{{{\mathrm{H}}}_{\mathrm{2}}}}}{\mathrm{\ mo}}{{{\mathrm{l}}}_{{\mathrm{Pt}}}}^{{\mathrm{ - 1}}}{\mathrm{\ mi}}{{{\mathrm{n}}}^{{\mathrm{ - 1}}}}$ and turnover number of 2926829 mo l H 2 mo l Pt - 1 ${\mathrm{mo}}{{{\mathrm{l}}}_{{{{\mathrm{H}}}_{\mathrm{2}}}}}{\mathrm{\ mo}}{{{\mathrm{l}}}_{{\mathrm{Pt}}}}^{{\mathrm{ - 1}}}$ at room temperature. These metrics surpass those of all existing state-of-the-art supported metal catalysts by an order of magnitude. Density functional theory calculations reveal that the integration of single-atom Pt onto the CoP substrate significantly enhances adsorption and dissociation processes for both water and AB molecules, thereby facilitating hydrogen production from AB hydrolysis. Interestingly, the TOF value is further elevated to 54878 mo l H 2 mo l Pt - 1 mi n - 1 ${\mathrm{mo}}{{{\mathrm{l}}}_{{{{\mathrm{H}}}_{\mathrm{2}}}}}{\mathrm{\ mo}}{{{\mathrm{l}}}_{{\mathrm{Pt}}}}^{{\mathrm{ - 1}}}{\mathrm{\ mi}}{{{\mathrm{n}}}^{{\mathrm{ - 1}}}}$ under UV-vis light irradiation, which can be attributed to the efficient separation and mobility of photogenerated carriers at the Pt-CoP interface. The findings underscore the effectiveness of CoP as a support for single-atom metals in hydrogen production, offering insights for designing high-performance catalysts for chemical hydrogen storage.

4.
J Colloid Interface Sci ; 669: 794-803, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38744157

RESUMEN

The coordination between carrier and active metal is critical to the catalytic efficiency of ammonia borane (AB) hydrolysis reaction. In the present study, we report a new type of catalytic support based on molybdenum boride (MBene) MoAl1-xB and demonstrate that the effective combination of MoAl1-xB with Ru nanoparticles can realize the significantly enhanced performance for hydrogen generation. Owing to the efficient activation and dissociation of reactants, the optimal Ru/MoAl1-xB catalyst achieves the large turnover frequency of 494 molH2 molRu-1 min-1, high hydrogen generation rate of 119817 mL min-1 gRu-1 and favorable apparent activation energy of 39.2 kJ mol-1 for the catalytic hydrolysis of AB under alkaline-free condition. The isotopic test suggests the cleavage of OH bond in H2O is the rate-determining step for hydrolysis reaction, while the fracture of B-H bond in AB is also well revealed by attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. Significantly, the flexible on-demand hydrogen generation is achieved by using chemical switches for on-off AB hydrolysis. This study provides a new support platform based on two-dimensional MBene to exploit efficient catalysts to boost AB dehydrogenation.

5.
Angew Chem Int Ed Engl ; 63(33): e202408193, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38802317

RESUMEN

Hydrolysis of ammonia borane (NH3BH3, AB) involves multiple undefined steps and complex adsorption and activation, so single or dual sites are not enough to rapidly achieve the multi-step catalytic processes. Designing multi-site catalysts is necessary to enhance the catalytic performance of AB hydrolysis reactions but revealing the matching reaction mechanisms of AB hydrolysis is a great challenge. In this work, we propose to construct RuPt-Ti multi-site catalysts to clarify the multi-site tandem activation mechanism of AB hydrolysis. Experimental and theoretical studies reveal that the multi-site tandem mode can respectively promote the activation of NH3BH3 and H2O molecules on the Ru and Pt sites as well as facilitate the fast transfer of *H and the desorption of H2 on Ti sites at the same time. RuPt-Ti multi-site catalysts exhibit the highest turnover frequency (TOF) of 1293 min-1 for AB hydrolysis reaction, outperforming the single-site Ru, dual-site RuPt and Ru-Ti catalysts. This study proposes a multi-site tandem concept for accelerating the dehydrogenation of hydrogen storage material, aiming to contribute to the development of cleaner, low-carbon, and high-performance hydrogen production systems.

6.
Angew Chem Int Ed Engl ; 63(24): e202404505, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598471

RESUMEN

Ammonia borane (AB) with 19.6 wt % H2 content is widely considered a safe and efficient medium for H2 storage and release. Co-based nanocatalysts present strong contenders for replacing precious metal-based catalysts in AB hydrolysis due to their high activity and cost-effectiveness. However, precisely adjusting the active centers and surface properties of Co-based nanomaterials to enhance their activity, as well as suppressing the migration and loss of metal atoms to improve their stability, presents many challenges. In this study, mesoporous-silica-confined bimetallic Co-Cu nanoparticles embedded in nitrogen-doped carbon (CoxCu1-x@NC@mSiO2) were synthesized using a facile mSiO2-confined thermal pyrolysis strategy. The obtained product, an optimized Co0.8Cu0.2@NC@mSiO2 catalyst, exhibits enhanced performance with a turnover frequency of 240.9 molH2 ⋅ molmetal ⋅ min-1 for AB hydrolysis at 298 K, surpassing most noble-metal-free catalysts. Moreover, Co0.8Cu0.2@NC@mSiO2 demonstrates magnetic recyclability and extraordinary stability, with a negligible decline of only 0.8 % over 30 cycles of use. This enhanced performance was attributed to the synergistic effect between Co and Cu, as well as silica confinement. This work proposes a promising method for constructing noble-metal-free catalysts for AB hydrolysis.

7.
Molecules ; 29(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675581

RESUMEN

Graphene is a good support for immobilizing catalysts, due to its large theoretical specific surface area and high electric conductivity. Solid chemical converted graphene, in a form with multiple layers, decreases the practical specific surface area. Building pores in graphene can increase specific surface area and provide anchor sites for catalysts. In this study, we have prepared porous graphene (PG) via the process of equilibrium precipitation followed by carbothermal reduction of ZnO. During the equilibrium precipitation process, hydrolyzed N,N-dimethylformamide sluggishly generates hydroxyl groups which transform Zn2+ into amorphous ZnO nanodots anchored on reduced graphene oxide. After carbothermal reduction of zinc oxide, micropores are formed in PG. When the Zn2+ feeding amount is 0.12 mmol, the average size of the Pt nanoparticles on PG in the catalyst is 7.25 nm. The resulting Pt/PG exhibited the highest turnover frequency of 511.6 min-1 for ammonia borane hydrolysis, which is 2.43 times that for Pt on graphene without the addition of Zn2+. Therefore, PG treated via equilibrium precipitation and subsequent carbothermal reduction can serve as an effective support for the catalytic hydrolysis of ammonia borane.

8.
Materials (Basel) ; 17(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673151

RESUMEN

This work focuses on the comparison of H2 evolution in the hydrolysis of boron-containing hydrides (NaBH4, NH3BH3, and (CH2NH2BH3)2) over the Co metal catalyst and the Co3O4-based catalysts. The Co3O4 catalysts were activated in the reaction medium, and a small amount of CuO was added to activate Co3O4 under the action of weaker reducers (NH3BH3, (CH2NH2BH3)2). The high activity of Co3O4 has been previously associated with its reduced states (nanosized CoBn). The performed DFT modeling shows that activating water on the metal-like surface requires overcoming a higher energy barrier compared to hydride activation. The novelty of this study lies in its focus on understanding the impact of the remaining cobalt oxide phase. The XRD, TPR H2, TEM, Raman, and ATR FTIR confirm the formation of oxygen vacancies in the Co3O4 structure in the reaction medium, which increases the amount of adsorbed water. The kinetic isotopic effect measurements in D2O, as well as DFT modeling, reveal differences in water activation between Co and Co3O4-based catalysts. It can be assumed that the oxide phase serves not only as a precursor and support for the reduced nanosized cobalt active component but also as a key catalyst component that improves water activation.

9.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673948

RESUMEN

A series of bench-stable Co(II) complexes containing hydrazone Schiff base ligands were evaluated in terms of their activity and selectivity in carbon-carbon multiple bond transfer hydrogenation. These cobalt complexes, especially a Co(II) precatalyst bearing pyridine-2-yl-N(Me)N=C-(1-methyl)imidazole-2-yl ligand, activated by LiHBEt3, were successfully used in the transfer hydrogenation of substituted styrenes and phenylacetylenes with ammonia borane as a hydrogen source. Key advantages of the reported catalytic system include mild reaction conditions, high selectivity and tolerance to functional groups of substrates.


Asunto(s)
Boranos , Cobalto , Bases de Schiff , Hidrogenación , Cobalto/química , Bases de Schiff/química , Catálisis , Boranos/química , Complejos de Coordinación/química , Alquinos/química , Amoníaco/química , Estructura Molecular
10.
ChemSusChem ; 17(9): e202400415, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38482550

RESUMEN

The development of low-cost and high-efficiency catalysts for the hydrolytic dehydrogenation of ammonia borane (AB, NH3BH3) is still a challenging technology. Herein, ultrafine MoOx-doped Ni nanoparticles (~3.0 nm) were anchored on g-C3N4@glucose-derived nitrogen-doped carbon nanosheets via a phosphate-mediated method. The strong adsorption of phosphate-mediated nitrogen-doped carbon nanosheets (PNCS) for metal ions is a key factor for the preparation of ultrasmall Ni nanoparticles (NPs). Notably, the alkaline environment formed by the reduction of metal ions removes the phosphate from the PNCS surface to generate P-free (P)NCS so that the phosphate does not participate in the subsequent catalytic reaction. The synthesized Ni-MoOx/(P)NCS catalysts exhibited outstanding catalytic properties for the hydrolysis of AB, with a high turnover frequency (TOF) value of up to 85.7 min-1, comparable to the most efficient noble-metal-free catalysts and commercial Pt/C catalyst ever reported for catalytic hydrogen production from AB hydrolysis. The superior performance of Ni-MoOx/(P)NCS can be ascribed to its well-dispersed ultrafine metal NPs, abundant surface basic sites, and electron-rich nickel species induced by strong electronic interactions between Ni-MoOx and (P)NCS. The strategy of combining multiple modification measures adopted in this study provides new insights into the development of economical and high-efficiency noble-metal-free catalysts for energy catalysis applications.

11.
Chemistry ; 30(23): e202304266, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38369590

RESUMEN

The exploration of stable, efficient, and low-cost catalysts toward ammonia borane hydrolysis is of vital significance for the practical implementation of this hydrogen production technology. Integrating interface engineering and nano-architecture engineering is a favorable strategy to elevate catalytic performance, as it can modify the electronic structure and provide sufficient active sites simultaneously. In this work, urchin-like NiCoP/CoP heterostructures are prepared via a three-step hydrothermal-oxidation-phosphorization synthesis route. It is demonstrated that the original Ni/Co molar ratio and the amount of phosphorus are crucial for adjusting the morphology, enhancing the exposed surface area, facilitating charge transfer, and modulating the adsorption and activation of H2O molecules. Consequently, the optimal Ni1Co2P heterostructure displays remarkable catalytic properties in the hydrolysis of ammonia borane with a turnover frequency (TOF) value of 30.3 molH2 ⋅ min-1 ⋅ molmetal -1, a low apparent activation energy of 25.89 kJ ⋅ mol-1, and good stability. Furthermore, by combining infrared spectroscopy and isotope kinetics experiments, a possible mechanism for the hydrolysis of ammonia borane was proposed.

12.
J Colloid Interface Sci ; 660: 792-799, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277836

RESUMEN

Non-precious metals have shown attractive catalytic prospects in hydrogen production from ammonia borane hydrolysis. However, the sluggish reaction kinetics in the hydrolysis process remains a challenge. Herein, P-bridged Fe-X-Co coupled sites in hollow carbon spheres (Fe-CoP@C) has been synthesized through in situ template solvothermal and subsequent surface-phosphorization. Benefiting from the optimized electronic structure induced by Fe doping to enhance the specific activity of Co sites, bimetallic synergy and hollow structure, the as-prepared Fe-CoP@C exhibits superior performances with a turnover frequency (TOF) of 183.5 min-1, and stability of over 5 cycles for ammonia borane hydrolysis, comparable to noble metal catalysts. Theoretical calculations reveal that the P-bridged Fe-X-Co coupled sites on the Fe-CoP@C catalyst surfaces is beneficial to adsorb reactant molecules and reduce their reaction barrier. This strategy of constructing hollow P-bridged bimetallic coupled sites may open new avenues for non-precious metal catalysis.

13.
Front Chem ; 11: 1269845, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025081

RESUMEN

Ammonia borane (NH3BH3) is a carrier of hydrogen gas that is known as a carbon-free renewable energy source. A high hydrogen content of ammonia borane and its stability in air at ambient temperatures make it a valuable molecule for its potential use as a hydrogen storage compound. In this study, we investigate a new approach for synthesizing ammonia borane using wastewater-derived ammonia source. Wastewater recycling has always been a global interest towards sustainability. In addition to reclaiming the water, recycling nutrients in wastewater is a topic of interest. Nutrients such as nitrogen, magnesium, and phosphorous are readily recovered from wastewater as struvite (NH4MgPO4·6H2O). This new process involves converting urine into struvite, and then reacting struvite with alkali borohydrides to produce a high-purity ammonia borane. The use of mild reaction conditions without extensive purification process, together with high purity ammonia borane product make this process a desirable course of action for recycling the nitrogen waste. In the course of moving towards a sustainable environment, the energy and wastewater industries will benefit from this combined process of nitrogen removal from wastewater to generate a renewable carbon-free energy molecule.

14.
ACS Appl Mater Interfaces ; 15(41): 48096-48109, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37805992

RESUMEN

Ammonia borane (AB) holds great promise for chemical hydrogen storage, but its slow dehydrogenation kinetics under ambient conditions requires a suitable catalyst to facilitate hydrogen production from AB. Here, we fabricated binary red phosphorus/graphitic carbon nitride (RP/g-CN) heterojunctions decorated with Pt nanoparticles (NPs, denoted Pt/RP/g-CN) with a facile ultrasound-assisted two-step protocol as a photo-assisted catalyst for the hydrolysis of AB (HAB). The heterojunction established through intimate P-O-N bonds was proven to have improved photophysical properties such as a lower electron-hole recombination and enhanced visible light utilization compared to the pristine components. With the incorporation of Pt NPs, the optical properties of RP/g-CN heterojunctions were further improved through Schottky junction formation between semiconductors and Pt NPs, enabling a superb hydrogen gas (H2) generation rate of 142 mol H2·mol Pt-1·min-1 under visible light irradiation. Even though g-CN is a well-known host material for many metal NPs, here we discovered that the interaction of Pt NPs with RP in the ternary heterojunction structure is more favorable than that of g-CN, stressing the key role of RP as a support material in the designed ternary heterostructure. The band alignment of the ternary heterojunction catalyst along with the flow of charge carriers was also studied and shown to be a type-II heterojunction structure without hole migration, namely, a complex type-II heterojunction. Several scavenger experiments were also conducted to explain the mechanism of the photo-assisted HAB. To the best of our knowledge, this is the first example of a dual mechanism proposed for the visible light-assisted HAB. While the majority of the H2 was believed to be produced on the Pt NPs surface with the traditional B-N bond dissociation mechanism, the strong oxidizing action of OH• radicals formed by the heterojunction photocatalyst was also speculated to account for the 33% increase in the activity upon visible light irradiation through another mechanism.

15.
Nanomaterials (Basel) ; 13(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37686897

RESUMEN

Carbon-doped boron nitride (denoted by BN/C) was prepared through the pyrolysis at 1100 °C of a nanostructured mixture of an alkyl amine borane adduct and ammonia borane. The alkyl amine borane adduct acts as a soft template to obtain nanospheres. This bottom-up approach for the synthesis of nanostructured BN/C is relatively simple and compelling. It allows the structure obtained during the emulsion process to be kept. The final BN/C materials are microporous, with interconnected pores in the nanometer range (0.8 nm), a large specific surface area of up to 767 m2·g-1 and a pore volume of 0.32 cm3·g-1. The gas sorption studied with CO2 demonstrated an appealing uptake of 3.43 mmol·g-1 at 0 °C, a high CO2/N2 selectivity (21) and 99% recyclability after up to five adsorption-desorption cycles.

16.
Polymers (Basel) ; 15(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37571156

RESUMEN

The present study involves the synthesis of photocatalytic composite nanofibers (NFs) comprising ilmenite nickel titanite-supported carbon nanofibers (NiTiO3/TiO2@CNFs) using an electrospinning process. The photocatalytic composite NFs obtained were utilized in hydrogen (H2) production from the photohydrolysis of ammonia borane (AB). The experimental findings show that the photocatalytic composite NFs with a loading of 25 mg had a good catalytic performance for H2 generation, producing the stoichiometric H2 in 11 min using 1 mmol AB under visible light at 25 °C and 1000 rpm. The increase in catalyst load to 50, 75, and 100 mg leads to a corresponding reduction in the reaction time to 7, 5, and 4 min. The findings from the kinetics investigations suggest that the rate of the photohydrolysis reaction is directly proportional to the amount of catalyst in the reaction system, adhering to a first-order reaction rate. Furthermore, it was observed that the reaction rate remains unaffected by the concentration of AB, thereby suggesting a reaction of zero order. Increasing the reaction temperature results in a decrease in the duration of the photohydrolysis reaction. Furthermore, an estimated activation energy value of 35.19 kJ mol-1 was obtained. The composite nanofibers demonstrated remarkable and consistent effectiveness throughout five consecutive cycles. The results suggest that composite NFs possess the capacity to function as a feasible substitute for costly catalysts in the process of H2 generation from AB.

17.
J Colloid Interface Sci ; 650(Pt B): 1648-1658, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37494861

RESUMEN

The design and fabrication of cheap and high-efficiency catalysts for ammonia borane (AB) hydrolysis for hydrogen production is crucial for its commercial applications. Improvement of the catalytic performance of the catalysts with the assistance of sunlight, a costless resource, is extremely attractive. Herein, we have constructed Z-scheme heterostructured VO-NiO-CuO catalysts with strong interfacial electronic interactions and abundant oxygen vacancies to enhance hydrogen production from NH3BH3 solution under visible light illumination. The as-prepared VO-NiO-CuO catalysts exhibit excellent catalytic activity with a high turnover frequency (TOF) of 35.3 molH2 molcat.-1 min-1 toward AB hydrolysis under visible light. It is demonstrated that excellent catalytic performance is highly related to the effective separation and migration of charge on the catalyst surface. As a result, dual active sites were created, making it easier for various reactants to be adsorbed and activated on the catalyst surface. Furthermore, the density functional theory (DFT) calculations indicate that the adsorption and activation of H2O occurred mainly at the Ni site of VO-NiO-CuO. When the VO-NiO-CuO is irradiated with visible light, the photogenerated electrons assembled on the conduction band were transferred to the O atom through the Ni-O bond, which made the bond length of H2O molecules longer and OH bonds more prone to breaking, thus facilitating AB hydrolysis under illumination. The findings in this work pave the way to design novel and efficient heterostructured catalysts for fast hydrogen release from NH3BH3 under visible light irradiation.

18.
Chemphyschem ; 24(17): e202300214, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37350535

RESUMEN

Theoretical chemistry (DLPNO-CCSD(T)/def2-TZVP//M06-2x/aug-cc-pVDZ) was used to design a system based on ammonia boranes catalyzed by pyrazoles with the aim of producing dihydrogen, nowadays of high interest as clean fuel. The reactivity of ammonia borane and cyclotriborazane were investigated, including catalytic activation through 1H-pyrazole, 4-methoxy-1H-pyrazole, and 4-nitro-1H-pyrazole. The results point toward a catalytic cycle by which, at the same time, ammonia borane can initially store and then, through catalysis, produce dihydrogen and amino borane. Subsequently, amino borane can trimerize to form cyclotriborazane that, in presence of the same catalyst, can also produce dihydrogen. This study proposes therefore a consistent progress in using environmentally sustainable (metal free) catalysts to efficiently extract dihydrogen from small B-N bonded molecules.

19.
Angew Chem Int Ed Engl ; 62(40): e202305371, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37291046

RESUMEN

Ammonia borane (AB) is a promising material for chemical H2 storage owing to its high H2 density (up to 19.6 wt %). However, the development of an efficient catalyst for driving H2 evolution through AB hydrolysis remains challenging. Therefore, a visible-light-driven strategy for generating H2 through AB hydrolysis was implemented in this study using Ni-Pt nanoparticles supported on phosphorus-doped TiO2 (Ni-Pt/P-TiO2 ) as photocatalysts. Through surface engineering, P-TiO2 was prepared by phytic-acid-assisted phosphorization and then employed as an ideal support for immobilizing Ni-Pt nanoparticles via a facile co-reduction strategy. Under visible-light irradiation at 283 K, Ni40 Pt60 /P-TiO2 exhibited improved recyclability and a high turnover frequency of 967.8 mol H 2 ${{_{{\rm H}{_{2}}}}}$ molPt -1 min-1 . Characterization experiments and density functional theory calculations indicated that the enhanced performance of Ni40 Pt60 /P-TiO2 originated from a combination of the Ni-Pt alloying effect, the Mott-Schottky junction at the metal-semiconductor interface, and strong metal-support interactions. These findings not only underscore the benefits of utilizing multipronged effects to construct highly active AB-hydrolyzing catalysts, but also pave a path toward designing high-performance catalysts by surface engineering to modulate the electronic metal-support interactions for other visible-light-induced reactions.

20.
J Colloid Interface Sci ; 646: 25-33, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37182256

RESUMEN

Developing efficient catalysts for the dehydrogenation of ammonia borane (AB) is important for the safe storage and controlled release of hydrogen, but it is a challenging task. In this study, we designed a robust Ru-Co3O4 catalyst using the Mott-Schottky effect to induce favorable charge rearrangement. The self-created electron-rich Co3O4 and electron-deficient Ru sites at heterointerfaces are indispensable for the activation of the B-H bond in NH3BH3 and the OH bond in H2O, respectively. The synergistic electronic interaction between the electron-rich Co3O4 and electron-deficient Ru sites at the heterointerfaces resulted in an optimal Ru-Co3O4 heterostructure that exhibited outstanding catalytic activity for the hydrolysis of AB in the presence of NaOH. The heterostructure had an extremely high hydrogen generation rate (HGR) of 12238 mL min-1 gcat-1 and an expected high turnover frequency (TOF) of 755 molH2 molRu-1 min-1 at 298 K. The activation energy needed for the hydrolysis was low (36.65 kJ mol-1). This study opens up a new avenue for the rational design of high-performance catalysts for AB dehydrogenation based on the Mott-Schottky effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA