Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Virtual Real ; 28(2): 111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765056

RESUMEN

This paper introduces a methodology tailored to capture, post-process, and replicate audio-visual data of outdoor environments (urban or natural) for VR experiments carried out within a controlled laboratory environment. The methodology consists of 360∘ video and higher order ambisonic (HOA) field recordings and subsequent calibrated spatial sound reproduction with a spherical loudspeaker array and video played back via a head-mounted display using a game engine and a graphical user interface for a perceptual experimental questionnaire. Attention was given to the equalisation and calibration of the ambisonic microphone and to the design of different ambisonic decoders. A listening experiment was conducted to evaluate four different decoders (one 2D first-order ambisonic decoder and three 3D third-order decoders) by asking participants to rate the relative (perceived) realism of recorded outdoor soundscapes reproduced with these decoders. The results showed that the third-order decoders were ranked as more realistic.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35371191

RESUMEN

In recent years, spatial audio reproduction has been widely researched with many studies focusing on headphone-based spatial reproduction. A popular format for spatial audio is higher order Ambisonics (HOA), where a spherical microphone array is typically used to obtain the HOA signals. When a spherical array is not available, beamforming-based binaural reproduction (BFBR) can be used, where signals are captured with arrays of a general configuration. While shown to be useful, no comprehensive studies of BFBR have been presented and so its limitations and other design aspects are not well understood. This paper takes an initial step towards developing a theory for BFBR and develops guidelines for selecting the number of beamformers. In particular, the average directivity factor of the microphone array is proposed as a measure for supporting this selection. The effect of head-related transfer function (HRTF) order truncation that occurs when using too many beamformer directions is presented and studied. In addition, the relation between HOA-based binaural reproduction and BFBR is discussed through analysis based on a spherical array. A simulation study is then presented, based on both a spherical and a planar array, demonstrating the proposed guidelines. A listening test verifies the perceptual attributes of the methods presented in this study. These results can be used for more informed beamformer design for BFBR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA