Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros











Intervalo de año de publicación
1.
Arthritis Res Ther ; 26(1): 74, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509595

RESUMEN

BACKGROUND: Systemic sclerosis (SSc) is an autoimmune connective tissue disease characterized by vasculopathy and progressive fibrosis of skin and several internal organs, including lungs. Macrophages are the main cells involved in the immune-inflammatory damage of skin and lungs, and alternatively activated (M2) macrophages seem to have a profibrotic role through the release of profibrotic cytokines (IL10) and growth factors (TGFß1). Nintedanib is a tyrosine kinase inhibitor targeting several fibrotic mediators and it is approved for the treatment of SSc-related interstitial lung disease (ILD). The study aimed to evaluate the effect of nintedanib in downregulating the profibrotic M2 phenotype in cultured monocyte-derived macrophages (MDMs) obtained from SSc-ILD patients. METHODS: Fourteen SSc patients, fulfilling the 2013 ACR/EULAR criteria for SSc, 10 SSc patients affected by ILD (SSc-ILD pts), 4 SSc patients non affected by ILD (SSc pts no-ILD), and 5 voluntary healthy subjects (HSs), were recruited at the Division of Clinical Rheumatology-University of Genova, after obtaining Ethical Committee approval and patients' informed consent. Monocytes were isolated from peripheral blood, differentiated into MDMs, and then maintained in growth medium without any treatment (untreated cells), or treated with nintedanib (0.1 and 1µM) for 3, 16, and 24 h. Gene expression of macrophage scavenger receptors (CD204, CD163), mannose receptor-1 (CD206), Mer tyrosine kinase (MerTK), identifying M2 macrophages, together with TGFß1 and IL10, were evaluated by quantitative real-time polymerase chain reaction. Protein synthesis was investigated by Western blotting and the level of active TGFß1 was evaluated by ELISA. Statistical analysis was carried out using non-parametric Wilcoxon test. RESULTS: Cultured untreated SSc-ILD MDMs showed a significant increased protein synthesis of CD206 (p < 0.05), CD204, and MerTK (p < 0.01), together with a significant upregulation of the gene expression of MerTK and TGFß1 (p < 0.05; p < 0.01) compared to HS-MDMs. Moreover, the protein synthesis of CD206 and MerTK and the gene expression of TGFß1 were significantly higher in cultured untreated MDMs from SSc-ILD pts compared to MDMs without ILD (p < 0.05; p < 0.01). In cultured SSc-ILD MDMs, nintedanib 0.1 and 1µM significantly downregulated the gene expression and protein synthesis of CD204, CD206, CD163 (p < 0.05), and MerTK (p < 0.01) compared to untreated cells after 24 h of treatment. Limited to MerTK and IL10, both nintedanib concentrations significantly downregulated their gene expression already after 16 h of treatment (p < 0.05). In cultured SSc-ILD MDMs, nintedanib 0.1 and 1µM significantly reduced the release of active TGFß1 after 24 h of treatment (p < 0.05 vs. untreated cells). CONCLUSIONS: In cultured MDMs from SSc-ILD pts, nintedanib seems to downregulate the profibrotic M2 phenotype through the significant reduction of gene expression and protein synthesis of M2 cell surface markers, together with the significant reduction of TGFß1 release, and notably MerTK, a tyrosine kinase receptor involved in lung fibrosis.


Asunto(s)
Indoles , Enfermedades Pulmonares Intersticiales , Esclerodermia Sistémica , Humanos , Interleucina-10/metabolismo , Tirosina Quinasa c-Mer/metabolismo , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/patología , Macrófagos/metabolismo , Pulmón , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/genética , Fibrosis , Fenotipo , Proteínas Tirosina Quinasas
2.
Pathogens ; 13(2)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38392907

RESUMEN

To determine the role that the IL-4/IL13 receptor plays in the development of alternatively activated macrophages (AAM or M2) and their role in the regulation of immunity to the extraintestinal phase of the helminth parasite Taenia crassiceps, we followed the infection in a mouse strain lacking the IL-4Rα gene (IL-4Rα-/-) and in the macrophage/neutrophil-specific IL-4Rα-deficient mouse strain (LysMcreIL-4Rα-/lox or cre/LoxP). While 100% of T. crassiceps-infected IL-4Rα+/+ (WT) mice harbored large parasite loads, more than 50% of th eIL-4Rα-/- mice resolved the infection. Approximately 88% of the LysMcreIL-4Rα-/lox mice displayed a sterilizing immunity to the infection. The remaining few infected cre/LoxP mice displayed the lowest number of larvae in their peritoneal cavity. The inability of the WT mice to control the infection was associated with antigen-specific Th2-type responses with higher levels of IgG1, IL-4, IL-13, and total IgE, reduced NO production, and increased arginase activity. In contrast, IL-4Rα-/- semi-resistant mice showed a Th1/Th2 combined response. Furthermore, macrophages from the WT mice displayed higher transcripts for Arginase-1 and RELM-α, as well as increased expression of PD-L2 with robust suppressive activity over anti-CD3/CD28 stimulated T cells; all of these features are associated with the AAM or M2 macrophage phenotype. In contrast, both the IL-4Rα-/- and LysMcreIL-4Rα-/lox mice did not fully develop AAM or display suppressive activity over CD3/CD28 stimulated T cells, reducing PDL2 expression. Additionally, T-CD8+ but no T-CD4+ cells showed a suppressive phenotype with increased Tim-3 and PD1 expression in WT and IL-4Rα-/-, which were absent in T. crassiceps-infected LysMcreIL-4Rα-/lox mice. These findings demonstrate a critical role for the IL-4 signaling pathway in sustaining AAM and its suppressive activity during cysticercosis, suggesting a pivotal role for AAM in favoring susceptibility to T. crassiceps infection. Thus, the absence of these suppressor cells is one of the leading mechanisms to control experimental cysticercosis successfully.

3.
J Infect Dis ; 229(4): 1215-1228, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38016013

RESUMEN

BACKGROUND: There is an increase in the global incidence of allergies. The hygiene hypothesis and the old friend hypothesis reveal that helminths are associated with the prevalence of allergic diseases. The therapeutic potential of Trichinella spiralis is recognized; however, the stage at which it exerts its immunomodulatory effect is unclear. METHODS: We evaluated the differentiation of bone marrow-derived macrophages stimulated with T spiralis excretory-secretory products. Based on an ovalbumin-induced murine model, T spiralis was introduced during 3 allergy phases. Cytokine levels and immune cell subsets in the lung, spleen, and peritoneal cavity were assessed. RESULTS: We found that T spiralis infection reduced lung inflammation, increased anti-inflammatory cytokines, and decreased Th2 cytokines and alarms. Recruitment of eosinophils, CD11b+ dendritic cells, and interstitial macrophages to the lung was significantly suppressed, whereas Treg cells and alternatively activated macrophages increased in T spiralis infection groups vs the ovalbumin group. Notably, when T spiralis was infected prior to ovalbumin challenge, intestinal adults promoted proportions of CD103+ dendritic cells and alveolar macrophages. CONCLUSIONS: T spiralis strongly suppressed type 2 inflammation, and adults maintained lung immune homeostasis.


Asunto(s)
Hipersensibilidad , Trichinella spiralis , Ratones , Humanos , Animales , Trichinella spiralis/metabolismo , Ovalbúmina/metabolismo , Inflamación , Citocinas/metabolismo
4.
Eur J Immunol ; 53(10): e2350475, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37452620

RESUMEN

Alveolar macrophages (alvMs) play an important role for maintenance of lung function by constant removal of cellular debris in the alveolar space. They further contribute to defense against microbial or viral infections and limit tissue damage during acute lung injury. alvMs arise from embryonic progenitor cells, seed the alveoli before birth, and have life-long self-renewing capacity. However, recruited monocytes may also help to restore the alvM population after depletion caused by toxins or influenza virus infection. At present, the population dynamics and cellular plasticity of alvMs during allergic lung inflammation is poorly defined. To address this point, we used a mouse model of Aspergillus fumigatus-induced allergic lung inflammation and observed that Th2-derived IL-4 and IL-13 caused almost complete disappearance of alvMs. This effect required STAT6 expression in alvMs and also occurred in various other settings of type 2 immunity-mediated lung inflammation or administration of IL-4 complexes to the lung. In addition, Th2 cells promoted conversion of alvMs to alternatively activated macrophages and multinucleated giant cells. Given the well-established role of alvMs for maintenance of lung function, this process may have implications for resolution of inflammation and tissue homeostasis in allergic asthma.


Asunto(s)
Asma , Neumonía , Eosinofilia Pulmonar , Ratones , Animales , Macrófagos Alveolares , Interleucina-4/metabolismo , Pulmón/metabolismo , Asma/metabolismo , Inflamación/metabolismo , Neumonía/metabolismo
5.
Sci China Life Sci ; 66(11): 2571-2586, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37340175

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease with limited therapeutic options. Macrophages, particularly alternatively activated macrophages (M2), have been recognized to contribute to the pathogenesis of pulmonary fibrosis. Therefore, targeting macrophages might be a viable therapeutic strategy for IPF. Herein, we report a potential nanomedicine-based gene therapy for IPF by modulating macrophage M2 activation. In this study, we illustrated that the levels of pleckstrin homology and FYVE domain containing 1 (Plekhf1) were increased in the lungs originating from IPF patients and PF mice. Further functionality studies identified the pivotal role of Plekhf1 in macrophage M2 activation. Mechanistically, Plekhf1 was upregulated by IL-4/IL-13 stimulation, after which Plekhf1 enhanced PI3K/Akt signaling to promote the macrophage M2 program and exacerbate pulmonary fibrosis. Therefore, intratracheal administration of Plekhf1 siRNA-loaded liposomes could effectively suppress the expression of Plekhf1 in the lungs and notably protect mice against BLM-induced lung injury and fibrosis, concomitant with a significant reduction in M2 macrophage accumulation in the lungs. In conclusion, Plekhf1 may play a crucial role in the pathogenesis of pulmonary fibrosis, and Plekhf1 siRNA-loaded liposomes might be a promising therapeutic approach against pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Liposomas , Humanos , Ratones , Animales , Liposomas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Macrófagos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/terapia , Pulmón/metabolismo , ARN Interferente Pequeño/metabolismo
6.
Immunity ; 56(5): 1064-1081.e10, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36948193

RESUMEN

The recent revolution in tissue-resident macrophage biology has resulted largely from murine studies performed in C57BL/6 mice. Here, using both C57BL/6 and BALB/c mice, we analyze immune cells in the pleural cavity. Unlike C57BL/6 mice, naive tissue-resident large-cavity macrophages (LCMs) of BALB/c mice failed to fully implement the tissue-residency program. Following infection with a pleural-dwelling nematode, these pre-existing differences were accentuated with LCM expansion occurring in C57BL/6, but not in BALB/c mice. While infection drove monocyte recruitment in both strains, only in C57BL/6 mice were monocytes able to efficiently integrate into the resident pool. Monocyte-to-macrophage conversion required both T cells and interleukin-4 receptor alpha (IL-4Rα) signaling. The transition to tissue residency altered macrophage function, and GATA6+ tissue-resident macrophages were required for host resistance to nematode infection. Therefore, during tissue nematode infection, T helper 2 (Th2) cells control the differentiation pathway of resident macrophages, which determines infection outcome.


Asunto(s)
Filariasis , Filarioidea , Infecciones por Nematodos , Ratones , Animales , Filarioidea/fisiología , Células Th2 , Monocitos , Cavidad Pleural , Ratones Endogámicos C57BL , Macrófagos/fisiología , Diferenciación Celular , Ratones Endogámicos BALB C
7.
Trop Med Infect Dis ; 8(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36668953

RESUMEN

Capillaria hepatica is a seriously neglected zoonotic parasite, which infects the liver of mammalian hosts, causing fibrosis or even hepatic failure. At present, the immune responses elicited by C. hepatica are not fully understood, and the role(s) of the programmed death 1 (PD-1) signaling pathway in the context of C. hepatica-induced pathology are not known. In this study, we identify that the late stage of infection with C. hepatica-especially the egg-derived antigens-modulates the host immune responses to promote alternatively activated macrophage (M2) polarization and programmed death ligand 2 (PD-L2) expression. The PD-L2-expressing alternatively activated M2 macrophages play an important role in maintaining Th2-biased regulatory immune responses, which may facilitate the survival of parasitic worms or eggs within the infected liver and reduce the liver pathology caused by the egg granulomas. Treatment with anti-PD-L2 antibody had no effect on the survival of parasitic eggs but deteriorated the pathology of egg granulomas. The obtained results suggest that PD-1/PD-L2 signaling, which is involved in alternative macrophage polarization, determines the immune response pattern and the immunopathology, consequently determining the outcome of the parasitic infection.

8.
Int J Clin Exp Pathol ; 15(10): 403-411, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36381422

RESUMEN

The phenotype of tumor-associated macrophages may be critical for tumor immunity, angiogenesis, and clinical disease outcome. Here, we elucidated the prognostic significance of the neovasculature and macrophages in colorectal cancer. We analyzed the effect of M2 macrophage density on the clinical behavior of 151 primary colorectal carcinomas using CD206 as a marker for type 2 macrophages. Triple immunohistochemical staining (ERG, SMA, and podoplanin) was used for microvessel evaluation. We found that M2 macrophages in colorectal cancer did not have a direct association with metastatic behavior. However, high numbers of CD206 tumor-associated macrophages correlated positively with recurrence-free interval duration (P=0.005). Fewer macrophages in the tumor microenvironment resulted in insufficient coverage of newly formed vessels by pericytes (P=0.011), and a high number of pericyte-impaired microvessels correlated with metastatic behavior (P<0.001). These results suggested that type 2 macrophages had a role in limiting the metastatic process by affecting vascular maturity and normalization. These findings contribute to understanding complex interactions in the tumor microenvironment and the clinical behavior of colorectal cancer.

9.
Front Immunol ; 13: 929552, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263057

RESUMEN

Schistosomiasis is a neglected tropical disease caused by worms of the genus Schistosoma spp. The progression of disease results in intense tissue fibrosis and high mortality rate. After egg deposition by adult worms, the inflammatory response is characterized by the robust activation of type 2 immunity. Monocytes and macrophages play critical roles during schistosomiasis. Inflammatory Ly6Chigh monocytes are recruited from the blood to the inflammatory foci and differentiate into alternatively activated macrophages (AAMs), which promote tissue repair. The common chain of ß2-integrins (CD18) regulates monocytopoiesis and mediates resistance to experimental schistosomiasis. There is still limited knowledge about mechanisms controlled by CD18 that impact monocyte development and effector cells such as macrophages during schistosomiasis. Here, we show that CD18low mice chronically infected with S. mansoni display monocyte progenitors with reduced proliferative capacity, resulting in the accumulation of the progenitor cell denominated proliferating-monocyte (pMo). Consequently, inflammatory Ly6Chigh and patrolling Ly6Clow monocytes are reduced in the bone marrow and blood. Mechanistically, low CD18 expression decreases Irf8 gene expression in pMo progenitor cells, whose encoded transcription factor regulates CSFR1 (CD115) expression on the cell surface. Furthermore, low CD18 expression affects the accumulation of inflammatory Ly6Chigh CD11b+ monocytes in the liver while the adoptive transference of these cells to infected-CD18low mice reduced the inflammatory infiltrate and fibrosis in the liver. Importantly, expression of Il4, Chil3l3 and Arg1 was downregulated, CD206+PD-L2+ AAMs were reduced and there were lower levels of IL-10 in the liver of CD18low mice chronically infected with S. mansoni. Overall, these findings suggest that CD18 controls the IRF8-CD115 axis on pMo progenitor cells, affecting their proliferation and maturation of monocytes. At the same time, CD18 is crucial for the appropriate polarization and function of AAMs and tissue repair during chronic schistosomiasis.


Asunto(s)
Antígenos CD18 , Esquistosomiasis , Animales , Ratones , Fibrosis , Integrinas/metabolismo , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Macrófagos , Monocitos , Esquistosomiasis/inmunología , Antígenos CD18/metabolismo
10.
Front Immunol ; 13: 930103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090987

RESUMEN

Objective: To address the role of methyl-CpG-binding domain 2 (MBD2) in the pathogenesis of asthma and its potential as a target for the asthmatic therapy. Methods: Studies were conducted in asthmatic patients and macrophage-specific Mbd2 knockout mice to dissect the role of MBD2 in asthma pathogenesis. Additionally, RNAi-based therapy with Mbd2 siRNA-loaded liposomes was conducted in an ovalbumin (OVA)-induced allergic airway inflammation mouse model. Results: Asthmatic patients and mice challenged with OVA exhibited upregulated MBD2 expression in macrophages, especially in alternatively activated (M2) macrophages. In particular, macrophage-specific knockout of Mbd2 protected mice from OVA-induced allergic airway inflammation and suppressed the M2 program. Notably, intratracheal administration of liposomes carrying Mbd2 siRNA decreased the expression of Mbd2 and prevented OVA-induced allergic airway inflammation in mice, as indicated by the attenuated airway inflammation and mucus production. Conclusions: The above data indicate that Mbd2 implicates in the pathogenesis of asthma predominantly by regulating the polarization of M2 macrophages, which supports that Mbd2 could be a viable target for treatment of asthma in clinical settings.


Asunto(s)
Asma , Proteínas de Unión al ADN , Liposomas , Macrófagos , ARN Interferente Pequeño , Animales , Asma/inducido químicamente , Asma/genética , Asma/metabolismo , Asma/prevención & control , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Inflamación/prevención & control , Liposomas/administración & dosificación , Liposomas/uso terapéutico , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Ovalbúmina/efectos adversos , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/uso terapéutico
11.
Methods Protoc ; 5(5)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36136814

RESUMEN

Macrophage activation refers to the enhanced functionality of macrophages in response to endogenous or exogenous stimuli. Due to the existence of limitless stimuli and a multitude of receptors on macrophage surfaces, the nature of activation (or acquired functioning) can be specific to the encountering stimulus. This article describes a macrophage-activation screening platform in a 96-well format. The methodology involves the generation of bone marrow-derived macrophages, their activation into two extreme activation states, and screening of activated macrophages for expression of bonafide protein biomarkers. A high-throughput and stringent assay to determine macrophage activation markers developed in this article can be adapted for biomarker determination in pathological conditions and toxicant/drug safety screening.

12.
Cell Biol Int ; 46(10): 1539-1556, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35842768

RESUMEN

The activation of immune cells in response to stimuli present in their microenvironment is regulated by their metabolic profile. Unlike the signal transduction events, which overlap to a huge degree in diverse cellular processes, the metabolome of a cell reflects a more precise picture of cell physiology and function. Different factors governing the cellular metabolome include receptor signaling, macro and micronutrients, normoxic and hypoxic conditions, energy needs, and biomass demand. Macrophages have enormous plasticity and can perform diverse functions depending upon their phenotypic state. This review presents recent updates on the cellular metabolome and molecular patterns associated with M1 and M2 macrophages, also termed "classically activated macrophages" and "alternatively activated macrophages," respectively. M1 macrophages are proinflammatory in nature and predominantly Th1-specific immune responses induce their polarization. On the contrary, M2 macrophages are anti-inflammatory in nature and primarily participate in Th2-specific responses. Interestingly, the same macrophage cell can adapt to the M1 or M2 phenotype depending upon the clues from its microenvironment. We elaborate on the various tissue niche-specific factors, which govern macrophage metabolism and heterogeneity. Furthermore, the current review provides an in-depth account of deregulated macrophage metabolism associated with pathological disorders such as cancer, obesity, and atherosclerosis. We further highlight significant differences in various metabolic pathways governing the cellular bioenergetics and their impact on macrophage effector functions and associated disorders.


Asunto(s)
Inflamación/patología , Macrófagos/citología , Humanos , Inflamación/metabolismo , Macrófagos/metabolismo , Transducción de Señal
13.
Bioeng Transl Med ; 7(2): e10280, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35600643

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by the infiltration of macrophages in the fibrotic region. Currently, no therapeutic strategies effectively control disease progression, and the 5-year mortality of patients after diagnosis is unacceptably high. Thus, developing an effective and safe treatment for IPF is urgently needed. The present study illustrated that methyl-CpG-binding protein 2 (MECP2), a protein responsible for the interpretation of DNA methylome-encoded information, was abnormally expressed in lung and bronchoalveolar lavage fluid samples of IPF patients and mice with onset of pulmonary fibrosis. And further studies verified that the overexpression of MECP2 occurred mainly in macrophages. Inhibition of Mecp2 expression in macrophages robustly abrogated alternatively activated macrophage (M2) polarization by regulating interferon regulatory factor 4 expression. Accordingly, cationic liposomes loading Mecp2 small interfering RNA (siRNA) were raised for the treatment of pulmonary fibrosis. It was noted that the liposomes accumulated in the fibrotic region after intratracheal injection, especially in macrophages. In addition, intratracheal administration of Mecp2 siRNA-loaded liposomes significantly reversed the established pulmonary fibrosis with few side-effects and high safety coefficients. Collectively, these results are essential not only for further understanding the DNA methylation in pathogenesis of IPF but also for providing a potent therapeutic strategy for IPF treatment in the clinic practice.

14.
Cancer Immunol Immunother ; 71(11): 2677-2689, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35353239

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related mortality; however, effective immunotherapy strategies are limited because of the immunosuppressive tumor microenvironment. Macrophages are essential components of the HCC microenvironment and are related to poor prognosis. Here, we evaluated the attributes of paracancer tissues in tumor immunity and progression using public databases. Based on the abundance of immune cells estimated by CIBERSORT, we performed weighted gene co-expression network analysis and found a specific module associated with M2 macrophages. Through analyzing interaction networks using Cytoscape and public datasets, we identified oncoprotein-induced transcript 3 (OIT3) as a novel marker of M2 macrophages. Overexpression of OIT3 remodeled immune features and reprogrammed the metabolism of M2 macrophages. Moreover, compared with wildtype macrophages, OIT3-overexpressing macrophages further enhanced the migration and invasion of co-cultured cancer cells. Additionally, OIT3-overexpressing macrophages promoted tumorigenesis and cancer development in vivo. Taken together, the findings demonstrate that OIT3 is a novel biomarker of alternatively activated macrophages and facilitates HCC metastasis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/patología , Macrófagos , Proteínas de la Membrana , Proteínas Oncogénicas/metabolismo , Microambiente Tumoral
15.
Theranostics ; 12(3): 1161-1172, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154480

RESUMEN

Aims: Neonatal immunity is functionally immature and skewed towards a TH2-driven, anti-inflammatory profile. This neonatal immunotolerance is partly driven by the type 2 cytokines: interleukin-4 (IL-4) and interleukin-13 (IL-13). Studies on neonatal cardiac regeneration reveal the beneficial role of an anti-inflammatory response in restoring cardiac function after injury. However, the role of an imbalanced immune repertoire observed in neonates on tissue regeneration is poorly understood; specifically, whether IL-4 and IL-13 actively modulate neonatal immunity during cardiac injury. Methods and results: Neonatal mice lacking IL-4 and IL-13 (DKOs) examined at 2 days after birth exhibited reduced anti-inflammatory immune populations with basal cardiac immune populations like adult mice. Examination of neonates lacking IL-4 and IL-13 at 2 days post cardiac ischemic injury, induced on the second day after birth, showed impaired cardiac function compared to their control counterparts. Treatment with either IL-4 or IL-13 cytokine during injury restored both cardiac function and immune population profiles in knockout mice. Examination of IL-4/IL-13 downstream pathways revealed the role of STAT6 in mediating the regenerative response in neonatal hearts. As IL-4/IL-13 drives polarization of alternatively activated macrophages, we also examined the role of IL-4/IL-13 signaling within the myeloid compartment during neonatal cardiac regeneration. Injury of IL-4Rα myeloid specific knockout neonates 2 days after birth revealed that loss of IL-4/IL-13 signaling in macrophages alone was sufficient to impair cardiac regeneration. Conclusions: Our results confirm that the TH2 cytokines: IL-4 and IL-13, which skews neonatal immunity to a TH2 profile, are necessary for maintaining and mediating an anti-inflammatory response in the neonatal heart, in part through the activation of alternatively activated macrophages, thereby permitting a niche conducive for regeneration.


Asunto(s)
Lesiones Cardíacas , Interleucina-13 , Animales , Inmunidad Innata , Interleucina-13/metabolismo , Interleucina-13/farmacología , Interleucina-4/metabolismo , Macrófagos/metabolismo , Ratones , Miocitos Cardíacos/metabolismo
16.
Trends Parasitol ; 38(3): 191-192, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35078723

RESUMEN

Type 2 inflammation (T2I) accompanies many inflammatory diseases. In a recent issue of Cell, Ahrends et al. demonstrate that helminth-elicited T2I preserves excitatory neurons and enteric function through the expansion of Arginase-1 (Arg-1)-expressing macrophages, thereby extending our understanding of the protective functions that T2I can orchestrate in inflamed barrier tissue.


Asunto(s)
Inflamación , Macrófagos , Humanos
17.
Artículo en Inglés | MEDLINE | ID: mdl-34916674

RESUMEN

Tumor-associated macrophages are an important part of the tumor microenvironment. The presence of certain populations of macrophages within tumor tissue may be associated with either better or worse disease prognosis. The study of these cells is currently receiving a great deal of attention, with the most important topics of investigation raised being: the typification of subpopulations of tumor-associated macrophages; identification of the prognostic significance of population density and distribution of macrophages in the tumor microenvironment; ways to influence macrophage activity, migration and differentiation within the tumor. The answers to these questions can improve the efficiency of immunoterapy for malignancies. The presented article briefly reviews recent findings on tumor-associated macrophages in solid malignancies.


Asunto(s)
Neoplasias , Macrófagos Asociados a Tumores , Humanos , Macrófagos/patología , Pronóstico , Microambiente Tumoral
18.
Front Immunol ; 12: 764825, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733292

RESUMEN

Eosinophils are a minor component of circulating granulocytes, which are classically viewed as end-stage effector cells in host defense against helminth infection and promoting allergic responses. However, a growing body of evidence has emerged showing that eosinophils are versatile leukocytes acting as an orchestrator in the resolution of inflammation. Rheumatoid arthritis (RA) is the most common chronic inflammatory disease characterized by persistent synovitis that hardly resolves spontaneously. Noteworthy, a specific population of eosinophils, that is, regulatory eosinophils (rEos), was identified in the synovium of RA patients, especially in disease remission. Mechanistically, the rEos in the synovium display a unique pro-resolving signature that is distinct from their counterpart in the lung. Herein, we summarize the latest understanding of eosinophils and their emerging role in promoting the resolution of arthritis. This knowledge is crucial to the design of new approaches to rebalancing immune homeostasis in RA, considering that current therapies are centered on inhibiting pro-inflammatory cytokines and mediators rather than fostering the resolution of inflammation.


Asunto(s)
Artritis Reumatoide/inmunología , Eosinófilos/inmunología , Citocinas/inmunología , Humanos , Inflamación/inmunología
19.
Semin Immunol ; 53: 101526, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-34802871

RESUMEN

Macrophages are innate immune cells with essential roles in host defense, inflammation, immune regulation and repair. During infection with multicellular helminth parasites, macrophages contribute to pathogen trapping and killing as well as to tissue repair and the resolution of type 2 inflammation. Macrophages produce a broad repertoire of effector molecules, including enzymes, cytokines, chemokines and growth factors that govern anti-helminth immunity and repair of parasite-induced tissue damage. Helminth infection and the associated type 2 immune response induces an alternatively activated macrophage (AAM) phenotype that - beyond driving host defense - prevents aberrant Th2 cell activation and type 2 immunopathology. The immune regulatory potential of macrophages is exploited by helminth parasites that induce the production of anti-inflammatory mediators such as interleukin 10 or prostaglandin E2 to evade host immunity. Here, we summarize current insights into the mechanisms of macrophage-mediated host defense and repair during helminth infection and highlight recent progress on the immune regulatory crosstalk between macrophages and helminth parasites. We also point out important remaining questions such as the translation of findings from murine models to human settings of helminth infection as well as long-term consequences of helminth-induced macrophage reprogramming for subsequent host immunity.


Asunto(s)
Helmintos , Macrófagos , Animales , Quimiocinas , Citocinas , Helmintos/fisiología , Humanos , Inflamación , Activación de Macrófagos , Ratones
20.
Front Cell Infect Microbiol ; 11: 702125, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395313

RESUMEN

For the establishment of a successful infection, i.e., long-term parasitism and a complete life cycle, parasites use various diverse mechanisms and factors, which they may be inherently bestowed with, or may acquire from the natural vector biting the host at the infection prelude, or may take over from the infecting host, to outmaneuver, evade, overcome, and/or suppress the host immunity, both innately and adaptively. This narrative review summarizes the up-to-date strategies exploited by a number of representative human parasites (protozoa and helminths) to counteract the target host immune defense. The revisited information should be useful for designing diagnostics and therapeutics as well as vaccines against the respective parasitic infections.


Asunto(s)
Helmintos , Parásitos , Enfermedades Parasitarias , Animales , Interacciones Huésped-Parásitos , Humanos , Evasión Inmune
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA