Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Acta Pharm Sin B ; 14(8): 3295-3311, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39220870

RESUMEN

Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.

2.
Adv Healthc Mater ; : e2401904, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101289

RESUMEN

Immunogenic cell death (ICD) could activate anti-tumor immune responses, which is highly attractive for improving cancer treatment effectiveness. Here, this work reports a multifunctional arsenic(III) allosteric inhibitor Mech02, which induces excessive accumulation of 1O2 through sensitized biocatalytic reactions, leading to cell pyroptosis and amplified ICD effect. After Mech02 is converted to Mech03, it could actualize stronger binding effects on the allosteric pocket of pyruvate kinase M2, further interfering with the anaerobic glycolysis pathway of tumors. The enhanced DNA damage triggered by Mech02 and the pyroptosis of cancer stem cells provide assurance for complete tumor clearance. In vivo experiments prove nanomicelle Mech02-HA NPs is able to activate immune memory effects and raise the persistence of anti-tumor immunity. In summary, this study for the first time to introduce the arsenic(III) pharmacophore as an enhanced ICD effect initiator into nitrogen mustard, providing insights for the development of efficient multimodal tumor therapy agents.

3.
FEBS Lett ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997225

RESUMEN

SSR128129E (SSR) is a unique small-molecule inhibitor of fibroblast growth factor receptors (FGFRs). SSR is a high-affinity allosteric binder that selectively blocks one of the two major FGFR-mediated pathways. The mechanisms of SSR activity were studied previously in much detail, allowing the identification of its binding site, located in the hydrophobic groove of the receptor D3 domain. The binding site overlaps with the position of an N-terminal helix, an element exclusive for the FGF8b growth factor, which could potentially convert SSR from an allosteric inhibitor into an orthosteric blocker for the particular FGFR/FGF8b system. In this regard, we report here on the structural and functional investigation of FGF8b/FGFR3c system and the effects imposed on it by SSR. We show that SSR is equally or more potent in inhibiting FGF8b-induced FGFR signaling compared to FGF2-induced activation. On the other hand, when studied in the context of separate extracellular domains of FGFR3c in solution with NMR spectroscopy, SSR is unable to displace the N-terminal helix of FGF8b from its binding site on FGFR3c and behaves as a weak orthosteric inhibitor. The substantial inconsistency between the results obtained with cell culture and for the individual water-soluble subdomains of the FGFR proteins points to the important role played by the cell membrane.

4.
Eur J Med Chem ; 276: 116672, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39067440

RESUMEN

Casein kinase-2 (CK2) are serine/threonine kinases with dual co-factor (ATP and GTP) specificity, that are involved in the regulation of a wide variety of cellular functions. Small molecules targeting CK2 have been described in the literature targeting different binding pockets of the kinase with a focus on type I inhibitors such as the recently published chemical probe SGC-CK2-1. In this study, we investigated whether known allosteric inhibitors binding to a pocket adjacent to helix αD could be combined with ATP mimetic moieties defining a novel class of ATP competitive compounds with a unique binding mode. Linking both binding sites requires a chemical linking moiety that would introduce a 90-degree angle between the ATP mimetic ring system and the αD targeting moiety, which was realized using a sulfonamide. The synthesized inhibitors were highly selective for CK2 with binding constants in the nM range and low micromolar activity. While these inhibitors need to be further improved, the present work provides a structure-based design strategy for highly selective CK2 inhibitors.


Asunto(s)
Quinasa de la Caseína II , Inhibidores de Proteínas Quinasas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Humanos , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga , Modelos Moleculares , Adenosina Trifosfato/metabolismo , Sitios de Unión
5.
J Agric Food Chem ; 72(29): 16128-16139, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39003764

RESUMEN

Currently, allosteric inhibitors have emerged as an effective strategy in the development of preservatives against the drug-resistant Botrytis cinerea (B. cinerea). However, their passively driven development efficiency has proven challenging to meet the practical demands. Here, leveraging the deep learning Neural Relational Inference (NRI) framework, we actively identified an allosteric inhibitor targeting B. cinerea Chitinase, namely, 2-acetonaphthone. 2-Acetonaphthone binds to the crucial domain of Chitinase, forming the strong interaction with the allosteric sites. Throughout the interaction process, 2-acetonaphthone diminished the overall connectivity of the protein, inducing conformational changes. These findings align with the results obtained from Chitinase activity experiments, revealing an IC50 value of 67.6 µg/mL. Moreover, 2-acetonaphthone exhibited outstanding anti-B. cinerea activity by inhibiting Chitinase. In the gray mold infection model, 2-acetonaphthone significantly extended the preservation time of cherry tomatoes, positioning it as a promising preservative for fruit storage.


Asunto(s)
Botrytis , Quitinasas , Enfermedades de las Plantas , Solanum lycopersicum , Botrytis/efectos de los fármacos , Quitinasas/química , Quitinasas/metabolismo , Quitinasas/antagonistas & inhibidores , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/microbiología , Conservación de Alimentos/métodos , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Frutas/química , Frutas/microbiología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Regulación Alostérica/efectos de los fármacos , Descubrimiento de Drogas
6.
ChemMedChem ; 19(18): e202400179, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38861151

RESUMEN

The Eyes Absent (EYA) family of developmental proteins, often in partnership with the sine oculis (SIX) homeobox proteins, promote cancer metastasis and recurrence in numerous tumor types. In addition to being a transcriptional coactivator, EYA2 is a Tyr phosphatase that dephosphorylates H2AX which leads to repair instead of apoptosis upon DNA damage and ERß which inhibits the anti-tumor transcriptional activity of ERß. The SIX members of the EYA-SIX complex are difficult to target, therefore, we targeted the EYA2 to promote cell death and prevent cancer progression. We conducted structural optimization of a previously discovered allosteric inhibitor of EYA2, 9987, using the combination of in silico modeling, biochemical and cell-based assays. A new series of compounds was developed with significantly improved cellular activity and physiochemical properties desirable for brain targets. Specifically, compound 2 e showed >30-fold improvement in the medulloblastoma cell line D458, relative to 9987, while maintaining potent and selective inhibitory activity against EYA2 Tyr phosphatase activity and a good multiparameter optimization score for central nervous system drugs.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares , Proteínas Tirosina Fosfatasas , Humanos , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Regulación Alostérica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Relación Estructura-Actividad , Línea Celular Tumoral , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química
7.
Bioorg Med Chem Lett ; 110: 129864, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38942126

RESUMEN

We report herein the design and discovery of novel allosteric HIV-1 integrase inhibitors. Our design concept utilized the spirocyclic moiety to restrain the flexibility of the conformation of the lipophilic part of the inhibitor. Compound 5 showed antiviral activity by binding to the nuclear lens epithelium-derived growth factor (LEDGF/p75) binding site of HIV-1 integrase (IN). The introduction of a lipophilic amide substituent into the central benzene ring resulted in a significant increase in antiviral activity against HIV-1 WT X-ray crystallography of compound 15 in complex with the integrase revealed the presence of a hydrogen bond between the oxygen atom of the amide of compound 15 and the hydroxyl group of the T125 side chain. Chiral compound 17 showed high antiviral activity, good bioavailability, and low clearance in rats.


Asunto(s)
Diseño de Fármacos , Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Compuestos de Espiro , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/síntesis química , Inhibidores de Integrasa VIH/química , Integrasa de VIH/metabolismo , VIH-1/efectos de los fármacos , Cristalografía por Rayos X , Ratas , Relación Estructura-Actividad , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Compuestos de Espiro/síntesis química , Animales , Humanos , Regulación Alostérica/efectos de los fármacos , Estructura Molecular , Modelos Moleculares , Sitios de Unión
8.
Chembiochem ; 25(13): e202400001, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38720172

RESUMEN

Coronavirus (CoV) infections have caused contagious and fatal respiratory diseases in humans worldwide. CoV 3-chymotrypsin-like proteases (3CLpro or Mpro) play an important role in viral maturation, and maintenance of their dimeric conformation is crucial for viral activity. Therefore, allosterically regulated dimerization of 3CLpro can be employed as a drug development target. Here, we investigated the allosteric regulatory mechanism of 3CLpro dimerization by using hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) technology. We found that the FLAG tag directly coupled to the N-finger of 3CLpro significantly increased HDX kinetics at the dimer interface, and 3CLpro transformed from a dimer to a monomer. The 3CLpro mutants of SARS-CoV-2, which are monomeric, also exhibited increased deuterium exchange. Binding of the allosteric inhibitor Gastrodenol to most betacoronavirus 3CLpros led to increased allosteric deuterium exchange, resulting in the monomeric conformation of the CoV 3CLpro upon binding. Molecular dynamics (MD) simulation analysis further indicated the molecular mechanism of action of Gastrodenol on CoV 3CLpro: binding of Gastrodenol to SARS-CoV-2 3CLpro destroyed the hydrogen bond in the dimer interface. These results suggest that Gastrodenol may be a potential broad-spectrum anti-betacoronavirus drug.


Asunto(s)
Proteasas 3C de Coronavirus , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Simulación de Dinámica Molecular , SARS-CoV-2 , Regulación Alostérica/efectos de los fármacos , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , SARS-CoV-2/enzimología , SARS-CoV-2/efectos de los fármacos , Humanos , Multimerización de Proteína/efectos de los fármacos , Cinética , Medición de Intercambio de Deuterio
9.
Mol Divers ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807000

RESUMEN

E76A mutations of SHP2 have been reported to associate with genetic developmental diseases and cancers, and TNO155 is one of the effective inhibitors targeted to the allosteric site 1, which has already entered the clinical stage. However, the detailed binding mechanism between them still needs further clarification at micro-atomic level. In this study, the binding mechanism of TNO155 inhibiting SHP2E76A and the superiorities of TNO155 at binding affinity and dynamic interactive behavior with SHP2E76A were probed utilizing a series of computational drug design technologies. The results show that SHP2E76A forms tighter interaction with TNO155 compared to SHP099. SHP2E76A-TNO155 exhibits the largest electrostatic interaction among all complex systems, which can be manifested by the strong hydrogen bond interactions formed by two electrically charged residues, Arg111 and Glu250. Notably, in SHP2E76A-TNO155 system, Asp489 makes an additional substantial beneficial contribution. The E76A mutation brings stronger residue positive correlation and a larger conformation fluctuation between N-CH2 and PTP domains, resulting in tighter binding between TNO155 and SHP2E76A. This study offers valuable insights for the further design and development of novel SHP2E76A allosteric inhibitors.

10.
Structure ; 32(7): 907-917.e7, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38582077

RESUMEN

PI3Kα is a lipid kinase that phosphorylates PIP2 and generates PIP3. The hyperactive PI3Kα mutation, H1047R, accounts for about 14% of breast cancer, making it a highly attractive target for drug discovery. Here, we report the cryo-EM structures of PI3KαH1047R bound to two different allosteric inhibitors QR-7909 and QR-8557 at a global resolution of 2.7 Å and 3.0 Å, respectively. The structures reveal two distinct binding pockets on the opposite sides of the activation loop. Structural and MD simulation analyses show that the allosteric binding of QR-7909 and QR-8557 inhibit PI3KαH1047R hyper-activity by reducing the fluctuation and mobility of the activation loop. Our work provides a strong rational basis for a further optimization and development of highly selective drug candidates to treat PI3KαH1047R-driven cancers.


Asunto(s)
Microscopía por Crioelectrón , Simulación de Dinámica Molecular , Humanos , Regulación Alostérica , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/química , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Unión Proteica , Sitios de Unión , Sitio Alostérico , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/química
11.
J Mol Model ; 30(5): 131, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613643

RESUMEN

CONTEXT: SHP2 is a non-receptor protein tyrosine phosphatase to remove tyrosine phosphorylation. Functionally, SHP2 is an essential bridge to connect numerous oncogenic cell-signaling cascades including RAS-ERK, PI3K-AKT, JAK-STAT, and PD-1/PD-L1 pathways. This study aims to discover novel and potent SHP2 inhibitors using a hierarchical structure-based virtual screening strategy that combines molecular docking and the fragment molecular orbital method (FMO) for calculating binding affinity (referred to as the Dock-FMO protocol). For the SHP2 target, the FMO method prediction has a high correlation between the binding affinity of the protein-ligand interaction and experimental values (R2 = 0.55), demonstrating a significant advantage over the MM/PBSA (R2 = 0.02) and MM/GBSA (R2 = 0.15) methods. Therefore, we employed Dock-FMO virtual screening of ChemDiv database of ∼2,990,000 compounds to identify a novel SHP2 allosteric inhibitor bearing hydroxyimino acetamide scaffold. Experimental validation demonstrated that the new compound (E)-2-(hydroxyimino)-2-phenyl-N-(piperidin-4-ylmethyl)acetamide (7188-0011) effectively inhibited SHP2 in a dose-dependent manner. Molecular dynamics (MD) simulation analysis revealed the binding stability of compound 7188-0011 and the SHP2 protein, along with the key interacting residues in the allosteric binding site. Overall, our work has identified a novel and promising allosteric inhibitor that targets SHP2, providing a new starting point for further optimization to develop more potent inhibitors. METHODS: All the molecular docking studies were employed to identify potential leads with Maestro v10.1. The protein-ligand binding affinities of potential leads were further predicted by FMO calculations at MP2/6-31G* level using GAMESS v2020 system. MD simulations were carried out with AmberTools18 by applying the FF14SB force field. MD trajectories were analyzed using VMD v1.9.3. MM/GB(PB)SA binding free energy analysis was carried out with the mmpbsa.py tool of AmberTools18. The docking and MD simulation results were visualized through PyMOL v2.5.0.


Asunto(s)
Acetamidas , Simulación de Dinámica Molecular , Fosfatidilinositol 3-Quinasas , Ligandos , Simulación del Acoplamiento Molecular
12.
Bioorg Med Chem ; 102: 117658, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460487

RESUMEN

Aurora kinases (AurkA/B/C) regulate the assembly of bipolar mitotic spindles and the fidelity of chromosome segregation during mitosis, and are attractive therapeutic targets for cancers. Numerous ATP-competitive AurkA inhibitors have been developed as potential anti-cancer agents. Recently, a few allosteric inhibitors have been reported that bind to the allosteric Y-pocket within AurkA kinase domain and disrupt the interaction between AurkA and its activator TPX2. Herein we report a novel allosteric AurkA inhibitor (6h) of N-benzylbenzamide backbone. Compound 6h suppressed the both catalytic activity and non-catalytic functions of AurkA. The inhibitory activity of 6h against AurkA (IC50 = 6.50 µM) was comparable to that of the most potent allosteric AurkA inhibitor AurkinA. Docking analysis against the Y-pocket revealed important pharmacophores and interactions that were coherent with structure-activity relationship. In addition, 6h suppressed DNA replication in G1-S phase, which is a feature of allosteric inhibition of AurA. Our current study may provide a useful insight in designing potent allosteric AurkA inhibitors.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Proteínas de Ciclo Celular , Aurora Quinasa A , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Replicación del ADN , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
13.
Int J Biol Macromol ; 265(Pt 1): 130644, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462102

RESUMEN

The main proteinase (Mpro) of SARS-CoV-2 plays a critical role in cleaving viral polyproteins into functional proteins required for viral replication and assembly, making it a prime drug target for COVID-19. It is well known that noncompetitive inhibition offers potential therapeutic options for treating COVID-19, which can effectively reduce the likelihood of cross-reactivity with other proteins and increase the selectivity of the drug. Therefore, the discovery of allosteric sites of Mpro has both scientific and practical significance. In this study, we explored the binding characteristics and inhibiting process of Mpro activity by two recently reported allosteric inhibitors, pelitinib and AT7519 which were obtained by the X-ray screening experiments, to probe the allosteric mechanism via molecular dynamic (MD) simulations. We found that pelitinib and AT7519 can stably bind to Mpro far from the active site. The binding affinity is estimated to be -24.37 ± 4.14 and - 26.96 ± 4.05 kcal/mol for pelitinib and AT7519, respectively, which is considerably stable compared with orthosteric drugs. Furthermore, the strong binding caused clear changes in the catalytic site of Mpro, thus decreasing the substrate accessibility. The community network analysis also validated that pelitinib and AT7519 strengthened intra- and inter-domain communication of Mpro dimer, resulting in a rigid Mpro, which could negatively impact substrate binding. In summary, our findings provide the detailed working mechanism for the two experimentally observed allosteric sites of Mpro. These allosteric sites greatly enhance the 'druggability' of Mpro and represent attractive targets for the development of new Mpro inhibitors.


Asunto(s)
Aminoquinolinas , Compuestos de Anilina , COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/química , Simulación del Acoplamiento Molecular , Cisteína Endopeptidasas/metabolismo , Simulación de Dinámica Molecular , Antivirales/farmacología , Antivirales/química
14.
Biochem Biophys Res Commun ; 704: 149707, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38428305

RESUMEN

Mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 2 (ERK2) and p38α MAP kinase (p38α MAPK), regulate various cellular responses. ERK2 is a drug target for treating many diseases, such as cancer, whereas p38α has attracted much attention as a promising drug target for treating inflammatory disorders. ERK2 is a critical off-target for p38α MAPK and vice versa. In this study, an allosteric ERK2 inhibitor with a benzothiazole moiety (compound 1) displayed comparable inhibitory activity against p38α MAPK. Crystal structures of these MAPKs showed that compound 1 bound to the allosteric site of ERK2 and p38α MAPK in distinct manners. Compound 1 formed a covalent bond with Cys162 of p38α MAPK, whereas this covalent bond was absent in the ERK2 complex even though the corresponding cysteine is conserved in ERK2. Structural dissection combined with computational simulations indicated that an amino acid difference in the allosteric site is responsible for the distinct binding modes of compound 1 with ERK2 and p38α MAPK. These structural insights underline the feasibility of developing highly selective and potent ERK2 and p38α MAPK inhibitors.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Benzotiazoles/farmacología
15.
Proteins ; 92(8): 905-922, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38506327

RESUMEN

Understanding kinase-inhibitor selectivity continues to be a major objective in kinase drug discovery. We probe the molecular basis of selectivity of an allosteric inhibitor (MSC1609119A-1) of the insulin-like growth factor-I receptor kinase (IGF1RK), which has been shown to be ineffective for the homologous insulin receptor kinase (IRK). Specifically, we investigated the structural and energetic basis of the allosteric binding of this inhibitor to each kinase by combining molecular modeling, molecular dynamics (MD) simulations, and thermodynamic calculations. We predict the inhibitor conformation in the binding pocket of IRK and highlight that the charged residues in the histidine-arginine-aspartic acid (HRD) and aspartic acid-phenylalanine-glycine (DFG) motifs and the nonpolar residues in the binding pocket govern inhibitor interactions in the allosteric pocket of each kinase. We suggest that the conformational changes in the IGF1RK residues M1054 and M1079, movement of the ⍺C-helix, and the conformational stabilization of the DFG motif favor the selectivity of the inhibitor toward IGF1RK. Our thermodynamic calculations reveal that the observed selectivity can be rationalized through differences observed in the electrostatic interaction energy of the inhibitor in each inhibitor/kinase complex and the hydrogen bonding interactions of the inhibitor with the residue V1063 in IGF1RK that are not attained with the corresponding residue V1060 in IRK. Overall, our study provides a rationale for the molecular basis of recognition of this allosteric inhibitor by IGF1RK and IRK, which is potentially useful in developing novel inhibitors with improved affinity and selectivity.


Asunto(s)
Simulación de Dinámica Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas , Receptor IGF Tipo 1 , Termodinámica , Humanos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/metabolismo , Regulación Alostérica , Receptor IGF Tipo 1/química , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/metabolismo , Sitio Alostérico , Sitios de Unión , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Receptor de Insulina/antagonistas & inhibidores , Enlace de Hidrógeno
16.
ACS Infect Dis ; 10(2): 412-425, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38265226

RESUMEN

Flavivirus infection usually results in fever accompanied by headache, arthralgia, and, in some cases, rash. Although the symptoms are mild, full recovery can take several months. Flaviviruses encode seven nonstructural proteins that represent potential drug targets for this viral family. Focusing on the Zika virus NS2B-NS3 protease, we uncovered a unique inhibitor, MH1, composed of aminothiazolopyridine and benzofuran moieties. MH1 inhibits ZVP with a biochemical IC50 of 440 nM and effectively blocks cleavage of ZVP substrates in cells. Surprisingly, MH1 inhibits the other flaviviral proteases at least 18-fold more weakly. This same phenomenon was observed in assays of the viral cytopathic effect, where only Zika virus showed sensitivity to MH1. This selectivity was unexpected since flaviviral proteases have high similarity in sequence and protein structure. MH1 binds at an allosteric site, as demonstrated by its ability to stabilize ZVP synergistically with an active site inhibitor. To understand its selectivity, we constructed a series of hybrid proteases composed of select segments of ZVP, which is sensitive to MH1, and dengue virus protease, which is essentially insensitive to MH1. Our results suggest that MH1 binds to the NS3 protease domain, disrupting its interaction with NS2B. These interactions are essential for substrate binding and cleavage. In particular, the unique dynamic properties of NS2B from Zika seem to be required for the function of MH1. Insights into the mechanism of MH1 function will aid us in developing non-active-site-directed, pan-flaviviral inhibitors, by highlighting the importance of evaluating and considering the dynamics of the NS2B regions.


Asunto(s)
Flavivirus , Infección por el Virus Zika , Virus Zika , Humanos , Dominio Catalítico , Proteínas no Estructurales Virales/metabolismo , Conformación Proteica , Serina Endopeptidasas/metabolismo , Flavivirus/química , Péptido Hidrolasas/metabolismo
17.
J Biomol Struct Dyn ; : 1-9, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38258435

RESUMEN

The high expression or mutation of SHP2 can induce cancer, so targeting SHP2 has become a new strategy for cancer treatment. In this study, we used the previously reported SHP2 allosteric inhibitor IACS-13909 as a lead drug for structural derivation and modification, and synthesized three SHP2 inhibitors. Among them, 1H-pyrazolo[3,4-b]pyrazine derivative 4b was a highly selective SHP2 allosteric inhibitor, with an IC50 value of 3.2 nM, and its inhibitory activity was 17.75 times than that of the positive control IACS-13909. The cell proliferation experiment detected that compound 4b would markedly inhibit the proliferation of various cancer cells. Interestingly, compound 4b was highly sensitive to KRASG12C-mutant non-small cell lung cancer NCI-H358 cells, with an IC50 value of 0.58 µM and its antiproliferative activity was 4.79 times than that of IACS-13909. Furthermore, the combination therapy of compound 4b and KRASG12C inhibitor sotorasib would play a strong synergistic effect against NCI-H358 cells. The western blot experiment detected that compound 4b markedly downregulated the phosphorylation levels of ERK and AKT in NCI-H358 cells. Molecular docking study predicted that compound 4b bound to the allosteric site of SHP2 and formed H-bond interactions with key residues Thr108, Glu110, Arg111, and Phe113. In summary, this study aims to provide new ideas for the development of SHP2 allosteric inhibitors for the treatment of KRASG12C mutant non-small cell lung cancer.Communicated by Ramaswamy H. Sarma.

18.
Curr Res Struct Biol ; 7: 100125, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38282755

RESUMEN

The EGFR-C797S resistance mutation to third-generation drugs has been overcome by fourth-generation inhibitors, allosteric inhibitors, namely EAI045 and has reached phase 3 clinical trials, so the Allosteric Site is currently an attractive target for development. In this study, researchers are interested in knowing the activity of metabolite compounds from marine natural ingredients Clathria Sp. against the Allosteric Site of EGFR computationally. The methods used include molecular docking using Autodock4 software and Molecular Dynamics simulation performed using GROMACS software. The research began with the preparation of metabolite samples from Clathria Sp. through the KnapSack database site and the preparation of EGFR receptors that have been complexed with allosteric inhibitors, namely proteins with PDB code 5D41. Each compound was docked to the Allosteric Site of the natural ligand and then molecular dynamics simulations were performed on the compound with the best docking energy compared to the natural ligand. From the docking results, the Clathrin_A compound showed the lowest binding energy compared to other metabolites, and the value was close to the natural ligand. Then from the molecular dynamics results, the clathrin_A compound shows good stability and resembles the natural ligand, which is analyzed through RMSD, RMSF, SASA, Rg, and PCA, and shows the binding free energy from MMPBSA analysis which is close to the natural ligand. It can be concluded, Clathrin_A compound has potential as an allosteric inhibitor.

19.
Acta Pharmacol Sin ; 45(4): 686-703, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38049578

RESUMEN

Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) is the most frequently mutated oncogene in human cancers with mutations predominantly occurring in codon 12. These mutations disrupt the normal function of KRAS by interfering with GTP hydrolysis and nucleotide exchange activity, making it prone to the GTP-bound active state, thus leading to sustained activation of downstream pathways. Despite decades of research, there has been no progress in the KRAS drug discovery until the groundbreaking discovery of covalently targeting the KRASG12C mutation in 2013, which led to revolutionary changes in KRAS-targeted therapy. So far, two small molecule inhibitors sotorasib and adagrasib targeting KRASG12C have received accelerated approval for the treatment of non-small cell lung cancer (NSCLC) harboring KRASG12C mutations. In recent years, rapid progress has been achieved in the KRAS-targeted therapy field, especially the exploration of KRASG12C covalent inhibitors in other KRASG12C-positive malignancies, novel KRAS inhibitors beyond KRASG12C mutation or pan-KRAS inhibitors, and approaches to indirectly targeting KRAS. In this review, we provide a comprehensive overview of the molecular and mutational characteristics of KRAS and summarize the development and current status of covalent inhibitors targeting the KRASG12C mutation. We also discuss emerging promising KRAS-targeted therapeutic strategies, with a focus on mutation-specific and direct pan-KRAS inhibitors and indirect KRAS inhibitors through targeting the RAS activation-associated proteins Src homology-2 domain-containing phosphatase 2 (SHP2) and son of sevenless homolog 1 (SOS1), and shed light on current challenges and opportunities for drug discovery in this field.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Descubrimiento de Drogas , Guanosina Trifosfato , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Antineoplásicos/química , Antineoplásicos/uso terapéutico
20.
Expert Opin Ther Targets ; 28(1-2): 9-15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38156441

RESUMEN

INTRODUCTION: Mitochondrial LonP1 is an ATP-powered protease that also functions as an ATP-dependent chaperone. LonP1 plays a pivotal role in regulating mitochondrial proteostasis, metabolism and cell stress responses. Cancer cells exploit the functions of LonP1 to combat oncogenic stressors such as hypoxia, proteotoxicity, and oxidative stress, and to reprogram energy metabolism enabling cancer cell proliferation, chemoresistance, and metastasis. AREAS COVERED: LonP1 has emerged as a potential target for anti-cancer therapeutics. We review how cytoprotective functions of LonP1 can be leveraged by cancer cells to support oncogenic growth, proliferation, and survival. We also offer insights into small molecule inhibitors that target LonP1 by two distinct mechanisms: competitive inhibition of its protease activity and allosteric inhibition of its ATPase activity, both of which are crucial for its protease and chaperone functions. EXPERT OPINION: We highlight advantages of identifying specific, high-affinity allosteric inhibitors blocking the ATPase activity of LonP1. The future discovery of such inhibitors has potential application either alone or in conjunction with other anticancer agents, presenting an innovative approach and target for cancer therapeutics.


Asunto(s)
Metabolismo Energético , Péptido Hidrolasas , Humanos , Proliferación Celular , Adenosina Trifosfatasas , Adenosina Trifosfato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA