Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ultrason Sonochem ; 63: 104981, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32000052

RESUMEN

The instability of allicin makes it easily decomposed into various organic sulfur compounds, resulting in significant decrease in biological activity. In this study, allicin was firstly extracted with water, then bound with whey protein isolates (WPI) which were pretreated by ultrasound to form conjugates, and the stability, water solubility and emulsibility of conjugates were as well investigated. The research results showed that there were no significant differences in the extraction yields of allicin from water, 40% and 80% ethanol. Appropriate frequency (20/40 kHz), power (50 W/L) and time (20 min) of ultrasonic pretreatments significantly increased (P < 0.05) the sulfhydryl groups content of WPI by 35.05% over control, causing improvement in binding ability of protein to allicin. The binding process of allicin-WPI displayed good fit with Elovich kinetic model (R2 = 0.9781). The mass retention rate of the conjugates (in 60% combination rate) with ultrasonic pretreating kept at 95.97% after 14 days of storage at 25 °C, whereas allicin's mass retention rate was only 61.79% at same storage condition. The water solubility of the prepared conjugates was significantly higher than allicin. And with optimal condition ultrasonic pretreatment of WPI, the conjugates showed the highest emulsifying capacity and emulsion stability (49.56 m2/g, 10.06 min). In conclusion, the ultrasonically pretreated allicin-WPI conjugates exhibited better stability, water solubility and emulsifying properties compared to allicin, this expands the application field of allicin.


Asunto(s)
Ácidos Sulfínicos/química , Proteína de Suero de Leche/química , Disulfuros , Emulsiones/química , Solubilidad , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA