Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
J Environ Manage ; 369: 122356, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217906

RESUMEN

Alkaline pretreatment can improve the methane yields and dewatering performance of anaerobically digested sludge, but it still needs to be coupled with other conditioning methods in the practical dewatering process. This study utilized four different flocculants and a skeleton builder for conditioning of alkaline pretreatment-anaerobically digested sludge. Chitosan was found to be the most effective in dewatering the sludge. Chitosan coupled with rice husk powder further improved the dewatering performance, which reduced normalized capillary suction time, specific resistance to filtration, and moisture content by 98.7%, 82.0%, and 12.1%. For land use of biogas slurry as a fertilizer, chitosan conditioning promoted the growth of corn seedlings, while the other three flocculants diminished the growth of corn seedlings. Chitosan coupled with rice husk powder further promoted the growth of corn seedlings by 103.5%, 65.0%, and 53.7% in fresh weight, dry weight, and root length, respectively. Overall, chitosan coupled with rice husk powder not only enhanced the dewaterability of alkaline pretreatment-anaerobically digested sludge but also realized the resource utilization of agricultural waste.


Asunto(s)
Biocombustibles , Quitosano , Oryza , Aguas del Alcantarillado , Quitosano/química , Oryza/crecimiento & desarrollo , Anaerobiosis , Zea mays/crecimiento & desarrollo , Eliminación de Residuos Líquidos/métodos , Fertilizantes/análisis
2.
Bioresour Technol ; 407: 131112, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009050

RESUMEN

Because of the naturally limited anaerobic degradability and limited biogas yield of raw sludge (RS), this study aims to increase the biogas production of primary sludge (PS) and waste activated sludge (WAS) by the integration of thermal alkaline process (TAP). PH 11 is confirmed to be the most suitable pH value for the TAP of both sludges. Moreover, with the pretreatment at pH 11 and 160 °C (6 bar) for 30 min, the investigated PSs and WASs achieved an increased biogas production of up to 81 % and 72 %, respectively. The improved net electricity production of WASs after TAP varied between 15-43 % compared to conventional WAS digestion. However, the TAP of PS at pH 11 enhanced the biogas production by 1-81 %, which did not constantly contribute to an improved net electricity production.


Asunto(s)
Biocombustibles , Aguas del Alcantarillado , Concentración de Iones de Hidrógeno , Álcalis/química , Temperatura , Electricidad , Anaerobiosis , Calor , Metano/metabolismo
3.
Microb Cell Fact ; 23(1): 199, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026314

RESUMEN

BACKGROUND: The demand for bioplastics has increased exponentially as they have emerged as alternatives to petrochemical plastics. However, there is a substantial lack of knowledge regarding bioplastic degradation. This study developed a novel pretreatment method to improve the accessibility of a bioplastic substrate for biodegradation. In this study, cellulose acetate, a bioplastic found in the world's most littered waste, e.g. cigarette filters, was selected as a potential substrate. Before anaerobic digestion, three thermal alkaline pretreatments: TA 30 °C, TA 90 °C, and TA 121 °C, were used to evaluate their effects on the chemical alterations of cellulose acetate. RESULT: The ester groups in cellulose acetate were significantly reduced by the TA 30 °C pretreatment, as seen by a decrease in C = O stretching vibrations and shortening of C - O stretches (1,270 ∼ 1,210 cm- 1), indicating effective removal of acetyl groups. This pretreatment significantly enhanced cellulose acetate biodegradability to a maximum of 91%, surpassing the previously reported cellulose acetate degradation. Methane production increased to 695.0 ± 4 mL/g of volatile solid after TA 30 °C pretreatment, indicating enhanced cellulose acetate accessibility to microorganisms, which resulted in superior biogas production compared to the control (306.0 ± 10 mL/g of volatile solid). Diverse microbes in the anaerobic digestion system included hydrolytic (AB240379_g, Acetomicrobium, FN436103_g, etc.), fermentative, and volatile fatty acids degrading bacteria (JF417922_g, AB274492_g, Coprothermobacter, etc.), with Methanobacterium and Methanothermobacter being the sole hydrogenotrophic methanogens in the anaerobic digestion system. Additionally, an attempt to predict the pathway for the effective degradation of cellulose acetate from the microbial community in different pretreatment conditions. CONCLUSIONS: To the best of our knowledge, this is the first study to estimate the maximum cellulose acetate degradation rate, with a simple and cost-effective pretreatment procedure. This approach holds promise for mitigating the environmental impact of cellulose acetate of cigarette filters and presents a sustainable and economically viable waste management strategy.


Asunto(s)
Biodegradación Ambiental , Celulosa , Celulosa/metabolismo , Celulosa/análogos & derivados , Metano/metabolismo , Anaerobiosis , Biocombustibles , Productos de Tabaco , Bacterias/metabolismo , Temperatura , Filtración
4.
Environ Sci Pollut Res Int ; 31(35): 48085-48102, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39017871

RESUMEN

Biomass pretreatment for the production of second-generation (2G) ethanol and biochemical products is a challenging process. The present study investigated the synergistic efficiency of purified carboxymethyl cellulase (CMCase), ß-glucosidase, and xylanase from Aspergillus fumigatus JCM 10253 in the hydrolysis of alkaline-pretreated sugarcane bagasse (SCB). The saccharification of pretreated SCB was optimised using a combination of CMCase and ß-glucosidase (C + ß; 1:1) and addition of xylanase (C + ß + xyl; 1:1:1). Independent and dependent variables influencing enzymatic hydrolysis were investigated using response surface methodology (RSM). Hydrolysis using purified CMCase and ß-glucosidase achieved yields of 18.72 mg/mL glucose and 6.98 mg/mL xylose. Incorporation of xylanase in saccharification increased the titres of glucose (22.83 mg/mL) and xylose (9.54 mg/mL). Furthermore, characterisation of SCB biomass by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy respectively confirmed efficient structural disintegration and revealed the degree of crystallinity and spectral characteristics. Therefore, depolymerisation of lignin to produce high-value chemicals is essential for sustainable and competitive biorefinery development.


Asunto(s)
Aspergillus fumigatus , Biomasa , Celulosa , Saccharum , Hidrólisis , Aspergillus fumigatus/enzimología , Celulasa/metabolismo , Xilosa/metabolismo , beta-Glucosidasa/metabolismo , Azúcares/metabolismo
5.
J Hazard Mater ; 475: 134882, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38870853

RESUMEN

Poly(butylene adipate-co-terephthalate) (PBAT) is a biodegradable plastic that is difficult to degrade under both mesophilic and thermophilic anaerobic conditions. In this study, the impact of the thermo-alkaline pretreatment (48 h, 70 °C, 1 % w/v NaOH) on the anaerobic degradation (AD) of PBAT, poly(lactic acid) (PLA) and PBAT/PLA blended plastics was investigated. Under mesophilic conditions, pretreatment only improved the methane yield of PBAT/PLA/starch plastic (100 days, 51 and 34 NmL/g VSadd for the treated and original plastics, respectively). Under thermophilic conditions, the pretreatment increased the methanogenic rate of PLA, PBAT and PBAT/PLA/starch plastic at the beginning stage (22 days, 35 and 79 NmL/g VSadd for original and treated PBAT, respectively), but did not change the methane yield at the end of the incubation (100 days, 91 NmL/g VSadd for original and treated PBAT). The reduction in the molecular weight and the formation of pore structures on the plastic surface accelerated the utilization of plastics by microorganisms. Furthermore, the pretreated plastics tend to form microplastics (MPs) with size predominantly below 500 µm (>90 %). The numbers of MPs dynamically changed with the degradation time. Several genera of bacteria showed specific degradation of biodegradable plastics under thermophilic conditions, including Desulfitibacter, Coprothermobacter, Tepidimicrobium, c_ D8A-2 and Thermacetogenium. The results suggest that more attention should be paid to the problem of MPs arising from the thermo-alkaline pretreatment.


Asunto(s)
Poliésteres , Poliésteres/química , Poliésteres/metabolismo , Anaerobiosis , Metano/metabolismo , Metano/química , Plásticos/química , Biodegradación Ambiental , Hidróxido de Sodio/química , Temperatura
6.
Water Res ; 258: 121744, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38754301

RESUMEN

Replacing petroleum-based plastics with biodegradable polymers is a major challenge for modern society especially for food packaging applications. To date, poly(lactic acid) represents 25 % of the total biodegradable plastics and it is estimated that, in the future, it could become the main contributor to the biodegradable plastics industry. Anaerobic digestion is an interesting way for the poly(lactic acid) end of life, even if its biodegradability is limited in mesophilic conditions. The aims of this study were to identify the best pre-treatment for maximizing the methane yield, minimizing the anaerobic digestion duration and limiting residual plastic fragments in the digestate. A systematic comparison was carried out between thermal, chemical, and thermo-chemical pre-treatment. Pre-treatment with 4 M KOH for 48 h at 35°C was effective in improving the mesophilic anaerobic digestion of the poly(lactic acid). Such pre-treatment allows obtaining 90 % of the theoretical methane potential, in 24 - 30 days. Importantly, such pre-treatment completely solubilized the poly(lactic acid), leaving no solid residues in the digestate. In addition, using KOH permits to avoid the sodication of the soil due to the digestate application as fertilizer.


Asunto(s)
Poliésteres , Poliésteres/química , Anaerobiosis , Polímeros/química , Metano/metabolismo , Ácido Láctico/metabolismo , Álcalis/química , Hidróxidos/química , Compuestos de Potasio/química , Biodegradación Ambiental , Temperatura
7.
J Agric Food Chem ; 72(18): 10206-10217, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38597965

RESUMEN

Bamboo is a promising biomass resource. However, the complex multilayered structure and chemical composition of bamboo cell walls create a unique anti-depolymerization barrier, which increases the difficulty of separation and utilization of bamboo. In this study, the relationship between the connections of lignin-carbohydrate complexes (LCCs) within bamboo cell walls and their multilayered structural compositions was investigated. The chemical composition, structural properties, dissolution processes, and migration mechanisms of LCCs were analyzed. Alkali-stabilized LCC bonds were found to be predominantly characterized by phenyl glycoside (PhGlc) bonds along with numerous p-coumaric acid (PCA) linkage structures. As demonstrated by the NMR and CLSM results, the dissolution of the LCC during the alkaline pretreatment process was observed to migrate from the inner secondary wall (S-layer) of the bamboo fiber cell walls to the cell corner middle lamella (CCML) and compound middle lamella (CML), ultimately leading to its release from the bamboo. Furthermore, the presence of H-type lignin-FA-arabinoxylan linkage structures within the bamboo LCC was identified with their primary dissolution observed in the S-layer of the bamboo fiber cell walls. The study results provided a clear target for breaking down the anti-depolymerization barrier in bamboo, signifying a major advancement in achieving the comprehensive separation of bamboo components.


Asunto(s)
Carbohidratos , Pared Celular , Lignina , Lignina/química , Pared Celular/química , Carbohidratos/química , Álcalis/química , Sasa/química , Solubilidad , Poaceae/química , Xilanos/química , Espectroscopía de Resonancia Magnética
8.
Bioresour Technol ; 401: 130730, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657825

RESUMEN

Achieving partial denitrification (PD) by using fermentation products extracted from waste activated sludge (WAS) rather than commercial organic matters is a promising approach for providing nitrite for anammox, while sludge reduction could also be realized by WAS reutilization. This study proposed an In-situ Sludge Fermentation coupled with Partial Denitrification (ISFPD) system and explored its performance under different conditions, including initial pH, nitrate concentrations, and organic matters. Results showed that nitrite production increased with the elevation of initial pH (from 6 to 9), and the highest nitrate-to-nitrite transformation ratio (NTR) reached 77% at initial pH 9. The PD rates and NTR were observed to be minimally influenced by initial nitrate concentrations. Acetate was preferred by denitrifying bacteria, while macromolecules such as proteins necessitated be hydrolyzed to be suitable for further utilization. The insights gained through this study paved the way for efficient nitrite production and sustainable WAS reutilization in harmony.


Asunto(s)
Desnitrificación , Fermentación , Nitratos , Nitritos , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Concentración de Iones de Hidrógeno , Nitritos/metabolismo , Nitratos/metabolismo , Estudios de Factibilidad , Compuestos Orgánicos , Reactores Biológicos , Álcalis/química
9.
Int J Biol Macromol ; 266(Pt 1): 131193, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552703

RESUMEN

Beyond the conventional consideration of pretreatment severity (PS) responsible for biomass disruption, the influence of reagent properties on biomass (LCB) disruption is often overlooked. To investigate the LCB disruption as a function of reagent properties, reagents with distinct cations (NaOH and KOH) and significantly higher delignification potential were chosen. NaOH solution (3 % w/v) with a measured pH of 13.05 ± 0.01 is considered the reference, against which a KOH solution (pH = 13.05 ± 0.01) was prepared for LCB pretreatment under the same PS. Despite comparable lignin content, varying glucose yield of NaOH (68.76 %) and KOH (46.88 %) pretreated residues indicated the presence of heterogeneously disrupted substrate. Holocellulose extracted from raw poplar (ASC, control) and alkaline pretreated residues (C-NaOH and C-KOH) were analyzed using HPLC, XRD, SEM, TGA/DTG, XPS, and 13CP MAS NMR to investigate the pretreatment-induced structural modification. Results revealed that, despite the same pretreatment severity, better disruption in C-NaOH (higher accessible fibril surface and less-ordered region) leading to higher digestibility than C-KOH, likely due to the smaller ionic radius of Na+, facilitates better penetration into dense LCB matrix. This study elucidates the importance of considering the reagent properties during LCB pretreatment, eventually enhancing consciousness while selecting reagents for efficient LCB utilization.


Asunto(s)
Biomasa , Hidróxidos , Lignina , Hidróxido de Sodio , Lignina/química , Hidróxido de Sodio/química , Hidróxidos/química , Hidrólisis , Populus/química , Compuestos de Potasio/química , Indicadores y Reactivos/química , Concentración de Iones de Hidrógeno
10.
J Hazard Mater ; 465: 133394, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38211522

RESUMEN

Discarded cefradine pellets (DCP) as the hazardous wastes contain lots of bioavailable sucrose. Anaerobic digestion (AD) may be a promising technology for treating DCP, achieving dual goals of waste treatment and resource recovery. However, high concentration of cefradine will inhibit the AD process. This study applied thermo-alkaline pretreatment (TAP) to remove cefradine and improve the AD performance of DCP. Around 95% cefradine could be degraded to different intermediate degradation products (TPs) in TAP at optimal condition, and hydrolysis and hydrogenation were the main degradation pathways. Quantitative structure-activity relationship analysis indicated that the main TPs exhibited lower toxicity than cefradine, and DCP residues after TAP were almost not toxic to E. coli K12 and B. subtilis growth by antibacterial activity analysis. Therefore, TAP promoted the biomethane yield in AD of DCP residues (274.74 mL/g COD), which was 1.91 times that of control group. Besides, compared to control group, final cefradine concentrations in liquids and sludge were significantly decreased in AD system with TAP, lowering environmental risk and indicating stronger prospect for process application. Microbiological analysis revealed that acidogens (Macellibacteroides, Bacteroides), syntrophs (Syntrophobacter, Syntrophorhabdus), and acetoclastic Methanosaeta were enriched in AD system with TAP, which contributed to improving AD performance of DCP.


Asunto(s)
Antibacterianos , Cefradina , Anaerobiosis , Escherichia coli/metabolismo , Eliminación de Residuos Líquidos/métodos , Aguas del Alcantarillado/química , Metano/metabolismo , Reactores Biológicos
11.
Environ Res ; 244: 117969, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109956

RESUMEN

Alkaline pre-treatment is known to enhance the acid production efficiency of sludge but adversely affects its dewatering performance. In this study, the improvement of sludge dewaterability by a novel bioleaching system with inoculating domesticated acidified sludge (AS) and its underlying mechanism were investigated. The results showed that although the addition of Fe2+ and the reduction of pH improved the dewatering performance of sludge, their effects were inferior to that of AS + Fe. The addition of AS and Fe2+ significantly reduced the specific resistance to filtration and capillary suction time of the sludge by 98.6 % and 95.5 %, respectively. This improvement in dewatering performance was achieved through the combined actions of bio-acidification, bio-oxidation, and bio-flocculation. Remarkably, under alkaline pH, microorganisms in AS remained active, leading to the formation of iron-based bioflocculants, along with a rapid pH decrease. These bioflocculants, in combination with protein (PN) in tightly bound extracellular polymeric substances (TB-EPS) through amide bonding, transformed TB-EPS from extractable to non-extractable form, reducing PN content from 12.1 mg g-1DS to 5.09 mg g-1DS and altering the protein's secondary structure. Consequently, the gel-like TB-EPS matrix effectively broke down, releasing cellular water and significantly enhancing sludge dewaterability.


Asunto(s)
Aguas del Alcantarillado , Agua , Agua/química , Hierro/química , Filtración , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos
12.
Waste Manag ; 171: 303-312, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37696172

RESUMEN

Paunch is comprised of the partially digested feed contained in cattle or sheep and contributes 20-50% of organic waste produced at red meat processing facilities. Anaerobic digestion has been identified as a promising technology for paunch treatment, however treatment times can be long and when combined with the moderate degradability of paunch this results in high treatment costs that need to be improved. Pre-treatment was investigated as a strategy to improve AD of paunch, alkaline treatment (NaOH or KOH) was selected due to the high lignin content. A range of alkaline loadings (1-20 g 100gTS-1) were tested with an equivalent hydroxide molar concentration of 9-250 mM [OH-]. Alkaline pre-treatment improved both the hydrolysis rate and the overall degradability of paunch solid by up to 4.4 times and 60%, respectively. The enhanced hydrolysis rate and methane yield was correlated to changes in material composition during pre-treatment. While alkaline concentration was an important factor, there were no significant improvements at alkaline concentrations above 12 g 100gTS-1 (150 mM [OH-]).

13.
J Food Sci Technol ; 60(11): 2761-2771, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37711566

RESUMEN

Bioethanol is obtained by hydrolysis of sugarcane bagasse by cellulases. Commercial cellulases are expensive and have a low concentration of ß-glucosidase (EC 3.2.1.21), which decrease hydrolysis efficiency. The present work aims to produce supernatant rich in ß-glucosidase (BGL) using the yeast Rhodotorula oryzicola and apply it in the hydrolysis of delignified sugarcane bagasse. Yeast fermented in a modified YPD (Yeast Peptone Dextrose) medium with 0.5% (w/v) cellobiose and 1.0% (w/v) glucose produced BGL with a specific activity of 1.44 ± 0.013 U/mg. Partial purification of BGL by acetone showed a specific activity of 3.48 U/mg. The optimum pH and temperature were 6.02 and 65 °C, respectively. BGL partially purified (BGLppR.oryzicola) by acetone showed tolerance to glucose, with a relative activity of 82.89 ± 0.11%. The activity increased with the addition of iron sulfate and zinc sulfate and decreased with manganese sulfate. BGL partially purified was thermal stable, with a relative activity of 85.59% after 60 min at 90 °C. BGL partially purified applied in the hydrolysis of sugarcane bagasse delignified with 3% (w/w) NaOH + 6% (w/w) Na2SO3 showed a conversion rate of 72.46 ± 1.60%. The results showed that BGL partially purified is a glucose tolerant cellulase of low-cost, promising the application of bioethanol production.

14.
J Environ Manage ; 342: 118244, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37269730

RESUMEN

In order to explore the role of thermal-alkaline pretreatment temperatures (TAPT) in sludge fermentation and the microbial characteristics, five groups (100, 120, 140, 160 °C and control group) were set up and the results showed that the increasing TAPT promoted the dissolution of soluble chemical oxygen demand (SCOD) and VFAs, but had slight influence on the release of NH4+-N and PO43--P. What's more, when it was 120 °C, the SCOD dissolution was comparable to that at 160 °C. Overall, 120 °C was the optimal condition, corresponding to the fact that the maximum release of SCOD was 8788.74 mg/L (2.63 times of the control group), the maximum dissolution of VFAs was 4596 mg/L (about 1.28 times of the control group). The trend of C/N was not significant. High-throughput sequencing showed that Firmicutes and Actinobacteriota were enriched with the temperature increasing, while Proteobacteria and Chloroflexi did not change significantly. Firmicutes was in a stable dominant position. Temperature conditions brought about significant changes in microbial interspecific interaction. Carbohydrate and amino acids had the highest metabolic abundance, especially at 120 °C group. The change rule of amino acid metabolism was similar to that of lipid metabolism, and the abundance of energy metabolism gradually increased with temperature. The protein metabolism was greatly affected by temperature. This study revealed the effect of microbial mechanism of TAPT on the sludge acid production efficiency.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Temperatura , Fermentación , Ácidos Grasos Volátiles/metabolismo , Concentración de Iones de Hidrógeno , Reactores Biológicos
15.
J Environ Manage ; 341: 118007, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37148763

RESUMEN

Integrated microbial electrolysis with anaerobic digestion is proved to be an effective way to improve methanogenesis efficiency of waste activated sludge (WAS). WAS requires pretreatment for efficient improvement of acidification or methanogenesis efficiency, but excessive acidification may inhibit the methanogenesis. In order to balance these two stages, a method for efficient WAS hydrolysis and methanogenesis has been proposed in this study by high-alkaline pretreatment integrated with microbial electrolysis system. The effects of pretreatment methods and voltage on the normal temperature digestion of WAS have also been further investigated with emphasis on the effects of voltage and substrate metabolism. The results show that compared to low-alkaline pretreatment (pH = 10), high-alkaline pretreatment (pH > 14) can double the SCOD release and promote the VFAs accumulation to 5657 ± 392 mg COD/L, but inhibit the methanogenesis process. Microbial electrolysis can alleviate this inhibition effectively through the rapid consumption of VFAs and speeding up of the methanogenesis process. The optimal methane yield of the integrated system is 120.4 ± 8.4 mL/g VSS at the voltage of 0.5 V. Enzyme activities, high-throughput and gene function prediction analysis reveal that the cathode and anode maintain the activity of methanogens under high substrate concentrations. Voltage positively responded to improved methane yield from 0.3 to 0.8 V, but higher than 1.1 V is found to be unfavorable for cathodic methanogenesis and results in additional power loss. These findings provide a perspective idea for rapid and maximum biogas recovery from WAS.


Asunto(s)
Álcalis , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Electrólisis , Metano , Digestión
16.
Bioresour Technol ; 379: 129058, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37068525

RESUMEN

Surfactant-assisted pretreatment has been widely reported to improve the enzymatic hydrolysis of lignocellulose by promoting removal of xylan and lignin. Hence, this work innovatively proposed the use of sodium lignosulfonate (SL) as an additive of alkaline pretreatment (AP), and evaluated its influence on the cellulosic digestibility of wheat straw (WS). The results displayed that the maximum of 72-h cellulosic digestibility could reach 83.5% as 15 g/L SL was introduced to the AP process (SAP), while the cellulosic digestibility of hydrothermal and alkaline pretreated WS was only 63.6% and 70.2%, respectively. These increments were subsequently attributed to the improvement of 6.5% xylan and 26.8% lignin accelerated by SAP, resulting in positive changes in structural characteristics such as accessibility, specific surface area, and cellulosic crystalline structure. The utilization of lignin-based surfactants in pretreatment has realized the economic feasibility of lignocellulosic biorefining and broadened the application prospect of surfactants.


Asunto(s)
Celulasa , Lignina , Lignina/química , Triticum/química , Hidróxido de Sodio , Xilanos , Celulasa/química , Tensoactivos , Hidrólisis
17.
Toxins (Basel) ; 15(3)2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36977096

RESUMEN

To reduce the toxicity of modern feeds polluted by mycotoxins, various sorbents are added to them when feeding animals. A part of the mycotoxins is excreted from the body of animals with these sorbents and remains in the manure. As a result, bulk animal wastes containing mixtures of mycotoxins are formed. It is known that it is partially possible to decrease the initial concentration of mycotoxins in the process of anaerobic digestion (AD) of contaminated methanogenic substrates. The aim of this review was to analyze the recent results in destruction of mycotoxins under the action of enzymes present in cells of anaerobic consortia catalyzing methanogenesis of wastes. The possible improvement of the functioning of the anaerobic artificial consortia during detoxification of mycotoxins in the bird droppings is discussed. Particular attention was paid to the possibility of effective functioning of microbial enzymes that catalyze the detoxification of mycotoxins, both at the stage of preparation of poultry manure for methanogenesis and directly in the anaerobic process itself. The sorbents with mycotoxins which appeared in the poultry wastes composed one of the topics of interest in this review. The preliminary alkaline treatment of poultry excreta before processing in AD was considered from the standpoint of effectively reducing the concentrations of mycotoxins in the waste.


Asunto(s)
Micotoxinas , Aves de Corral , Animales , Anaerobiosis , Estiércol , Consorcios Microbianos , Reactores Biológicos
18.
Bioresour Technol ; 377: 128940, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36958681

RESUMEN

Low-temperature torrefaction assisted with solid-state KOH/urea applied onto wheat straw was proposed to break down the lignocellulosic material to enhance biomethane production in anaerobic digestion (AD). The optimization of key parameters applying the Box-Behnken design and response surface methodology showed that an addition of 0.1 g/gstraw KOH/urea at 180 °C while torrefying for 30 min was the optimal condition for producing biomethane. Results indicate that co-applying KOH and urea in torrefaction synergistically enhanced the biodegradability of straw by effectively removing lignin and largely retaining cellulose, giving rise to a 41 % increase in the cumulative methane production compared to untreated straw (213 mL/g-volatile solids (VSraw)) from batch AD. Additionally, the nitrogen- and potassium-rich digestates helped to improve soil fertility, thus achieving a zero-waste discharge. This study demonstrated the feasibility of using solid-state KOH/urea assisted low-temperature torrefaction as an effective pretreatment method to promote methane production during AD.


Asunto(s)
Triticum , Urea , Anaerobiosis , Temperatura , Metano , Biocombustibles
19.
Sci Total Environ ; 873: 162324, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36813202

RESUMEN

Biodegradable plastics (BPs) tend to replace conventional plastics, which increases the amount of BP waste entering the environment. The anaerobic environment exists extensively in nature, and anaerobic digestion has become a widely used technique for organic waste treatment. Many kinds of BPs have low biodegradability (BD) and biodegradation rates under anaerobic condition due to the limitation of hydrolysis, so they still have harmful environmental consequences in anaerobic environment. There is an urgent need to find an intervention method to improve the biodegradation of BPs. Therefore, this study aimed to investigate the effectiveness of alkaline pretreatment in accelerating the thermophilic anaerobic degradation of ten widely used BPs, such as poly (lactic acid) (PLA), poly (butylene adipate-co-terephthalate) (PBAT), thermoplastic starch (TPS), poly (butylene succinate-co-butylene adipate) (PBSA), cellulose diacetate (CDA), etc. The results showed that NaOH pretreatment significantly improved the solubility of PBSA, PLA, poly (propylene carbonate) (PPC), and TPS. Except for PBAT, pretreatment with an appropriate NaOH concentration could improve the BD and degradation rate. The pretreatment also reduced the lag phase in the anaerobic degradation of BPs such as PLA, PPC, and TPS. Specifically, for CDA and PBSA, the BD increased from 4.6 % and 30.5 % to 85.2 % and 88.7 %, with increments of 1752.2 % and 190.8 %, respectively. Microbial analysis indicated that NaOH pretreatment promoted the dissolution and hydrolysis of PBSA and PLA and the deacetylation of CDA, which contributed to rapid and complete degradation. This work not only provides a promising method for improving the degradation of BP waste but also lays the foundation for its large-scale application and safe disposal.


Asunto(s)
Plásticos Biodegradables , Anaerobiosis , Hidróxido de Sodio , Poliésteres , Plásticos/metabolismo , Biodegradación Ambiental , Adipatos/metabolismo
20.
Environ Res ; 224: 115531, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36822537

RESUMEN

Additional various carbon and free riboflavin could improve anaerobic digestion of waste activated sludge (WAS). However, these substances were not reused. In this study, a reusable riboflavin and carbon black (RCB) co-modified filler was developed and combined with alkaline pretreatment for enhancing the production of volatile fatty acids (VFAs) and methane during anaerobic digestion of WAS. The results showed that RCB-modified fillers exhibited a promoting effect on the reduction of alkali-pretreated WAS. The amounts of the accumulated VFAs mainly containing acetate and the produced methane rose with the increased concentration of immobilized riboflavin (0-0.75 g/L) in the presence of 4 g/L carbon black. When the alkaline pretreatment time of WAS increased from 3 d to 8 d, the amount of methane production increased from 22.8% to 63.9% in the presence of 0.75 g/L riboflavin and 4 g/L carbon black compared with that without RCB-modified fillers. Moreover, 0.75 g/L riboflavin and 4 g/L carbon black had a synergetic effect on promoting methane production via broadening extracellular electron transfer pathways. During this process, microbial dehydrogenase activity, electron transport system activity and coenzyme F420 were enhanced. Microbial community analysis showed that RCB-modified filler addition promoted the enrichment of Syntrophomonas and Pseudomonas involved in direct interspecies electron transfer (DIET). These results indicated that DIET establishment was accelerated. Meanwhile, the populations of acetic acid-producing bacteria including Rikenellaceae_RC9_gut_group and Proteiniphilum, aceticlastic and acid-tolerant methanogenic archaea including Methanosarcina and Methanosaeta, RumEn_M2 were increased. These results indicate that RCB-modified fillers coupled with alkaline pretreatment is an effective method to promote the production of methane during anaerobic digestion of WAS.


Asunto(s)
Aguas del Alcantarillado , Hollín , Aguas del Alcantarillado/microbiología , Anaerobiosis , Reactores Biológicos , Ácidos Grasos Volátiles , Metano , Bacteroidetes , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA