Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Occup Environ Hyg ; 20(9): 401-413, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37163743

RESUMEN

Home healthcare workers (HHCWs) can be occupationally exposed to bioaerosols in their clients' homes. However, choosing the appropriate method to measure bioaerosol exposures remains a challenge. Therefore, a systematic comparison of existing measurement approaches is essential. Bioaerosol measurements with a real-time, fluorescence-based Wideband Integrated Bioaerosol Sensor (WIBS) were compared to measurements with four traditional off-line methods (TOLMs). The TOLMS included optical microscopic counting of spore trap samples, microbial cultivation of impactor samples, qPCR, and next-generation sequencing (NGS) of filter samples. Measurements were conducted in an occupied apartment simulating the environments that HHCWs could encounter in their patients' homes. Descriptive statistics and Spearman's correlation test were computed to compare the real-time measurement with those of each TOLM. The results showed that the geometric mean number concentrations of the total fluorescent aerosol particles (TFAPs) detected with the WIBS were several orders of magnitude higher than those of total fungi or bacteria measured with the TOLMs. Among the TOLMs, concentrations obtained with qPCR and NGS were the closest to the WIBS detections. Correlations between the results obtained with the WIBS and TOLMs were not consistent. No correlation was found between the concentrations of fungi detected using microscopic counting and any of the WIBS fluorescent aerosol particle (FAP) types, either indoors or outdoors. In contrast, the total concentrations detected with microbial cultivation correlated with the WIBS TFAP results, both indoors and outdoors. Outdoors, the total concentration of culturable bacteria correlated with FAP-type AC. In addition, fungal and bacterial concentrations obtained with qPCR correlated with FAP types AB and AC. For a continuous, high-time resolution but broad scope, the real-time WIBS could be considered, whereas a TOLM would be the best choice for specific and more accurate microbial characterization. HHCWs' activities tend to re-aerosolize bioaerosols causing wide temporal variation in bioparticle concentrations. Thus, the advantage of using the real-time instrument is to capture those variations. This study lays a foundation for future exposure assessment studies targeting HHCWs.


Asunto(s)
Contaminación del Aire Interior , Servicios de Atención de Salud a Domicilio , Humanos , Lectura , Monitoreo del Ambiente/métodos , Bacterias/genética , Aerosoles/análisis , Microbiología del Aire , Hongos/genética , Contaminación del Aire Interior/análisis
2.
Environ Res ; 206: 112568, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34932978

RESUMEN

Exposure to airborne microorganisms has been linked to the development of health detriments, particularly in children. Microbial pollution can constitute a relevant health concern indoors, where levels of airborne microorganisms may be specially increased. This work aimed to characterize the airborne bacterial levels, and fungal concentration and diversity to which twins are exposed in their bedrooms (n = 30) during the first year of life. Bacterial and fungal levels varied widely across the studied bedrooms, with 10% of the rooms presenting values exceeding the national limit for both indoor bacterial and fungal counts. Cladosporium was the predominant genera, but Penicillium, Aspergillus, Alternaria, Trichoderma and Chrysonilia were also identified in the samples collected. In addition, two toxicogenic species, A. flavus and T. viride, were identified at counts that exceeded the established limit (12 CFU/m3) in 3 and 7% of the bedrooms surveyed, respectively. Based on indoor-to-outdoor concentration ratios, outdoor air seemed to be the main contributor to the total load of fungi found indoors, while airborne bacteria appeared to be mainly linked to indoor sources. Higher indoor nitrogen dioxide levels were negatively correlated with indoor fungi concentrations, whereas particulate matter and volatile organic compounds concentrations were associated with an increase in fungal prevalence. In addition, rooms with small carpets or located near outdoor agriculture sources presented significantly greater total fungal concentrations. Multiple linear regression models showed that outdoor levels were the single significant predictor identified, explaining 38.6 and 53.6% of the Cladosporium sp. and total fungi counts, respectively. The results also suggest the existence of additional factors contributing to airborne biologicals load in infants' bedrooms that deserve further investigation. Findings stress the need for investigating the existence of declared interactive effects between chemical and biological air pollutants to accurately understand the health risk that the assessed levels can represent to infants.


Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior , Contaminación del Aire Interior/análisis , Bacterias , Niño , Monitoreo del Ambiente/métodos , Hongos , Humanos
3.
Environ Int ; 150: 106423, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33578068

RESUMEN

Compared to soil or aquatic ecosystems, the atmosphere is still an underexplored environment for microbial diversity. In this study, we surveyed the composition, variability and sources of microbes (bacteria and fungi) in the near surface atmosphere of a highly populated area, spanning ~ 4,000 Km2 around the city center of Madrid (Spain), in different seasonal periods along two years. We found a core of abundant bacterial genera robust across space and time, most of soil origin, while fungi were more sensitive to environmental conditions. Microbial communities showed clear seasonal patterns driven by variability of environmental factors, mainly temperature and accumulated rain, while local sources played a minor role. We also identified taxa in both groups characteristic of seasonal periods, but not of specific sampling sites or plant coverage. The present study suggests that the near surface atmosphere of urban environments contains an ecosystem stable across relatively large spatial and temporal scales, with a rather homogenous composition, modulated by climatic variations. As such, it contributes to our understanding of the long-term changes associated to the human exposome in the air of highly populated areas.


Asunto(s)
Microbiología del Aire , Microbiota , Ciudades , Hongos , Humanos , Estaciones del Año , España
4.
Aerobiologia (Bologna) ; 37(2): 217-224, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33462523

RESUMEN

In the indoor environment of dental clinics, dental staff and patients are exposed to various types of infectious agents transported by aerosols and particles, generated during dental procedures, promoting an increased risk of cross-infection. The aim of this study was to determine the levels and diversity of microbial aerosol in relation to particle load in five different departments of a dental school clinic. The air samples were collected by an active single-stage Andersen sampler during the treatment procedure. The mean concentrations of airborne bacteria were in the range of 52-1030 and 8-844 CFU/m3 at the distances of 0.5 and 2 m, respectively. Bacterial aerosols in pediatric, endodontics, and restorative wards and fungal aerosols in all the sampling wards were significantly higher at the distances of 0.5 m. The dominant bacteria and fungi were identified as Micrococcus, Bacillus, Streptococcus, Staphylococcus, Penicillium, Cladosporium, Aspergillus, Rhizopus, and Alternaria. The positive associations were also obtained between bacteria and fungi levels and particulate matter (PM) concentrations.

5.
Front Microbiol ; 12: 793037, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087495

RESUMEN

Particulate matter (PM) has been a threat to the environment and public health in the metropolises of developing industrial countries such as Beijing. The microorganisms associated with PM have an impact on human health if they are exposed to the respiratory tract persistently. There are few reports on the microbial resources collected from PM and their antimicrobial activities. In this study, we greatly expanded the diversity of available commensal organisms by collecting 1,258 bacterial and 456 fungal isolates from 63 PM samples. A total of 77 bacterial genera and 35 fungal genera were included in our pure cultures, with Bacillus as the most prevalent cultured bacterial genus, Aspergillus, and Penicillium as the most prevalent fungal ones. During heavy-haze days, the numbers of colony-forming units (CFUs) and isolates of bacteria and fungi were decreased. Bacillus, Paenibacillus, and Chaetomium were found to be enriched during haze days, while Kocuria, Microbacterium, and Penicillium were found to be enriched during non-haze days. Antimicrobial activity against common pathogens have been found in 40 bacterial representatives and 1 fungal representative. The collection of airborne strains will provide a basis to greatly increase our understanding of the relationship between bacteria and fungi associated with PM and human health.

6.
Aerobiologia (Bologna) ; 34(2): 127-138, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29773926

RESUMEN

The aim of this work was to determine the genera or species composition and the number of colony forming units of airborne bacteria and fungi, respectively, in two salt mines in Poland "Wieliczka" (Lesser Poland) and "Polkowice-Sieroszowice" (Lower Silesia). Both of them are working environments characterized by extreme conditions, and additionally "Wieliczka," officially placed on the UNESCO World Heritage Sites' list, plays a role of tourist attraction. There are also some curative chambers located in this mine. Air samples were taken once in December 2015, between 6:00 a.m. and 9:00 a.m. There were nine measurement points located about 200 m underground in "Wieliczka" and six measurement points located in the working shafts about 400 m underground in "Polkowice-Sieroszowice." The total volume of each air sample was 150 L. Air samples, collected in individual measurement points of both salt mines, were inoculated on two microbiological media: potato dextrose agar and tryptic soy agar using the impact method. We identified 10 and 3 fungal genera in the "Wieliczka" Salt Mine and in "Polkowice-Sieroszowice," respectively. The most common were fungi of the Penicillium genus. In both mines, the Gram-positive bacteria of genus Micrococcus were detected most frequently. Among identified microorganisms, there were neither pathogenic fungi nor bacteria. The most prevalent microorganisms detected in indoor air were Gram-positive cocci, which constituted up to 80% of airborne microflora. Our results showed that microorganisms recorded in the air samples are not a threat to workers, tourists or patients. Neither pathogens nor potentially pathogenic microorganisms, listed as BSL-2, BSL-3 or BSL-4, were detected. The microbes identified during our analysis commonly occur in such environments as the soil, water and air. Some of the detected bacteria are component of natural microflora of human skin and mucous membranes, and they can cause only opportunistic infections in individuals depending on their health condition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA