Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Environ Sci (China) ; 149: 574-584, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181669

RESUMEN

The formation of oligomeric hydrogen peroxide triggered by Criegee intermediate maybe contributes significantly to the formation and growth of secondary organic aerosol (SOA). However, to date, the reactivity of C2 Criegee intermediates (CH3CHOO) in areas contaminated with acidic gas remains poorly understood. Herein, high-level quantum chemical calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations are used to explore the reaction of CH3CHOO and H2SO4 both in the gas phase and at the air-water interface. In the gas phase, the addition reaction of CH3CHOO with H2SO4 to generate CH3HC(OOH)OSO3H (HPES) is near-barrierless, regardless of the presence of water molecules. BOMD simulations show that the reaction at the air-water interface is even faster than that in the gas phase. Further calculations reveal that the HPES has a tendency to aggregate with sulfuric acids, ammonias, and water molecules to form stable clusters, meanwhile the oligomerization reaction of CH3CHOO with HPES in the gas phase is both thermochemically and kinetically favored. Also, it is noted that the interfacial HPES- ion can attract H2SO4, NH3, (COOH)2 and HNO3 for particle formation from the gas phase to the water surface. Thus, the results of this work not only elucidate the high atmospheric reactivity of C2 Criegee intermediates in polluted regions, but also deepen our understanding of the formation process of atmospheric SOA induced by Criegee intermediates.


Asunto(s)
Ácidos Sulfúricos , Ácidos Sulfúricos/química , Aerosoles , Modelos Químicos , Contaminantes Atmosféricos/química , Simulación de Dinámica Molecular , Atmósfera/química
2.
J Contam Hydrol ; 267: 104424, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39260021

RESUMEN

The transport of per- and polyfluoroalkyl substances (PFASs) through unsaturated source-zone soils is a critical yet poorly understood aspect of their environmental behavior. To date, most experimental studies have only focused on the equilibrium or non-equilibrium partitioning of PFASs to the air-water interface, or solid-phase based equilibrium or non-equilibrium transport. Currently, there are discrepancies between air-water interfacial partitioning (Kia) results measured using a drainage-based column method (which supports a Langmuir isotherm) when compared to measurements from alternative experimental methods (which support a Freundlich isotherm). We hypothesize that this discrepancy is the result of non-Fickian transport conditions developing during column tests using the drainage method, which reduces the magnitude of the apparent Kia (Kia,app) when estimated using the retardation factor correlation from breakthrough curve experiments. To test the validity of this hypothesis, the drainage method was implemented using PFOS in a sand column and compared with prior data collected using a quasi-saturated column method. Results demonstrate that the apparent Kia was reduced by 3 to 123-fold, resulting in up to 123-fold faster breakthrough of PFOS than predicted with the assumption of equilibrium adsorption to the air-water interface. A novel mobile-immobile model (MIM) of PFAS fate and transport was developed, incorporating a term for anomalously adsorbed solute in the mobile zone to explain highly anomalous data. The modelling results using a modified HYDRUS-1D software show that anomalous air-water interfacial adsorption and/or flowpath channelization are plausible mechanisms for accelerated transport of PFOS and support the application of a Freundlich isotherm for PFOS. Overall, non-Fickian transport mechanisms demonstrate the potential to accelerate PFOS transport through the vadose zone by up to a factor of 123 under specific circumstances. This work demonstrates the assumption of equilibrium adsorption to air-water interfaces, even for homogeneous laboratory experiments, is not necessarily valid.

3.
Water Res ; 266: 122422, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39276479

RESUMEN

Fate and transport of per- and polyfluoroalkyl substances (PFAS) in wastewater treatment plant (WWTP) effluent discharged to rapid infiltration basins (RIBs) is investigated using data from 26 WWTPs in Michigan, USA. PFAS were found to accumulate in groundwater downgradient from RIBs with median groundwater-effluent enrichment factors for ten commonly detected, terminal-form perfluoroalkyl acids (PFAAs) ranging from 1.3 to 5.2. Maximum contaminant levels for drinking water were exceeded in groundwater at all WWTPs with available PFAS data. Numerical models of unsaturated fluid flow and PFAS transport honoring RIB site properties, such as median vertical separation distance to the water table and a realistic range of area-normalized effluent fluxes, show long-chain PFAS undergo significant delays from air-water interface (AWI) adsorption, requiring up to 15 times longer to reach maximum mass flux to the saturated zone under low-flux conditions, where AWI area is 2.5 times greater. Short-chain PFAS commonly detected in effluent are only minimally affected by AWI adsorption and show little to no attenuation under high-flux conditions. The nonlinear inverse relationship between water content and AWI area highlights the important role of AWI adsorption in modulating unsaturated transport of long-chain PFAS to underlying groundwater due to the broad range of flux rates applied to RIB systems.

4.
Food Res Int ; 195: 114977, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277242

RESUMEN

Maize zein based nanoparticles (ZNPs) can have applications as food dispersion stabilizers. It has not been documented to what extent the used zein isolation method and conditions thereof impact the structure and functionality of nanoparticles (NPs) based thereupon. Here, zein extracted from maize flour on lab scale (LS-zein) was compared with a commercial zein powder (CS-zein). On a dry matter basis, CS-zein contained 96.5% protein, while LS-zein contained 74.5% protein, 12.7% lipid, 2.9% ash, and a residual fraction, likely starch remnants. SE-HPLC analysis showed that 27.8% of CS-zein protein occurred in an aggregated and insoluble form, while LS-zein mainly contained mono-/dimeric proteins but also approximately 30% hydrophilic peptides. These differences resulted in notably different behavior in the functionality of ZNPs based on CS- and LS-zein (CS-ZNPs and LS-ZNPs, respectively) produced via liquid antisolvent precipitation. CS-ZNPs had poor foaming properties regardless of the pH, in line with their low interfacial dilatational moduli (12.9-15.0 mN/m). The foaming properties of LS-ZNPs were notably better. The high LS-ZNP foam stability (FS) at pH 8.0 and 10.0 was attributed to electrostatic repulsive effects between interfaces of adjacent air bubbles due to the adsorption of peptides and to synergistic protein-lipid interaction effects at the air-water interface. The LS-ZNP FS at pH 4.0 was low despite a high interfacial dilatational modulus (52.6 mN/m). It is hypothesized that intact LS-ZNPs in the liquid thin films between gas bubbles negatively affect FS by a bridging de-wetting effect. Overall, it can be concluded that the (partial) co-isolation of lipids with zein may positively influence foaming properties of NPs based thereupon, while extensive zein purification as applied in industrial zein isolation leads to (partial) zein aggregation and overall low foaming capacity of the obtained CS-ZNPs.


Asunto(s)
Nanopartículas , Agua , Zea mays , Zeína , Zeína/química , Zea mays/química , Nanopartículas/química , Agua/química , Aire , Harina/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula
5.
Sci Total Environ ; 949: 174877, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047816

RESUMEN

The bimolecular reactions between Criegee intermediates (CIs) and atmospheric trace species have been extensively investigated, with a particular focus on the reaction with water, while the catalytic role of atmospheric organic compounds in hydration reactions was often neglected. In this study, we employed quantum chemical calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations to investigate the catalytic effects of atmospheric organic amines, organic acids, and alcohols on the hydration reactions of CIs in the gas phase and at the gas-liquid interface. The catalytic reactions were found to follow a cyclic catalytic structure and a stepwise reaction mechanism. Gas-phase studies revealed that organic acids exhibited stronger catalytic effects compared to amines and alcohols, and the catalytic efficiency of amines and alcohols was similar to those of single water molecule. In addition, the catalytic reaction barriers of organic acids and alcohols were positively correlated with their gas-phase acidity (R2 = 0.94 to 0.97). A negative correlation was observed between the catalytic reaction barrier of amines and their gas-phase basicity (R2 = 0.84 to 0.90) and proton affinity (R2 = 0.84 to 0.92). At the gas-liquid interface, organic acids promoted the formation of hydroxyethyl hydroperoxide (HEHP, CH3CH(OH)(OOH)), organic acid ions, and H3O+, whereas the catalytic hydration of CIs by organic amines resulted in the formation of CH3CH(OH)OO and amine ions. Both HEHP and CH3CH(OH)OO can be further decomposed to form OH and HO2, or participate in new particles formation as precursors. This study complements the research gap on the reaction of CIs with water, providing valuable insights into the atmospheric sources of HEHP and HOx as well as the formation of secondary organic aerosols (SOAs).

6.
Environ Pollut ; 357: 124436, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38925220

RESUMEN

The construction of cascade reservoirs can interfere with the natural hydrologic cycles of basins, causing negative environmental effects such as altering the emission patterns of the Nitrous oxide (N2O), a potent greenhouse gas. To elucidate the impact of cascade reservoirs construction on river N2O emissions, we utilized the thin boundary model and the incubation experiments to estimate the N2O fluxes at the air-water interface and at the water-sediment interface of cascade reservoirs on the Yunnan-Guizhou Plateau, respectively. Additionally, we explored the influence of various factors, with particular emphasis on damming, on N2O emissions and production. Moreover, we identified the main pathways of N2O production and proposed management strategies to mitigate N2O emissions from cascade reservoirs. The findings revealed that N2O fluxes at the air-water interface and the water-sediment interface were 4.73 ± 1.32 µmol m-2 · d-1 and 15.56 ± 1.98 µmol m-2 · d-1, respectively. Influenced by temperature, dissolved oxygen (DO), resource substances (active nitrogen substrates and dissolved organic carbon (DOC)) and reservoir properties (scale, hydraulic retention time (HRT), reservoir age, etc.), the N2O concentration and flux exhibited notable spatial heterogeneity, gradually increasing downstream. Temperature has a significant direct impact on N2O flux, as well as indirect effects through DO and resource chemicals. Furthermore, the correlation between dissolved oxygen utilization rate (AOU) and net N2O flux (ΔN2O) indicated that N2O emissions at the water-air interface were primarily attributable to nitrification, whereas those at the water-sediment interface were predominantly driven by denitrification. These findings not only enhance our comprehension of N2O emissions at various interfaces of cascade reservoirs but also offer theoretical backing for the formulation of management strategies aimed at efficiently mitigating N2O emissions from continuously dammed rivers.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Óxido Nitroso , Óxido Nitroso/análisis , China , Contaminantes Atmosféricos/análisis , Sedimentos Geológicos/química , Ríos/química
7.
Chemistry ; 30(43): e202400825, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38838064

RESUMEN

The efficient reduction of CO2 into valuable products is a challenging task in an international context marked by the climate change crisis and the need to move away from fossil fuels. Recently, the use of water microdroplets has emerged as an interesting reaction media where many redox processes which do not occur in conventional solutions take place spontaneously. Indeed, several experimental studies in microdroplets have already been devoted to study the reduction of CO2 with promising results. The increased reactivity in microdroplets is thought to be linked to unique electrostatic solvation effects at the air-water interface. In the present work, we report a theoretical investigation on this issue for CO2 using first-principles molecular dynamics simulations. We show that CO2 is stabilized at the interface, where it can accumulate, and that compared to bulk water solution, its electron capture ability is larger. Our results suggest that reduction of CO2 might be easier in interface-rich systems such as water microdroplets, which is in line with early experimental data and indicate directions for future laboratory studies. The effect of other relevant factors which could play a role in CO2 reduction potential is discussed.

8.
Food Chem ; 455: 139877, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38824726

RESUMEN

High-intensity ultrasonication is an emerging technology for plant protein isolation and modification. In this study, the potential of temperature-controlled ultrasonication to enhance the recovery of functional proteins from potato trimmings was assessed. Different ultrasound energy levels [2000-40,000 J/g fresh weight (FW)] were applied during protein extraction at pH 9.0. True protein yields after ultrasonication significantly increased (up to 91%) compared to conventional extraction (33%). Microstructural analysis of the extraction residues showed more disrupted cells as ultrasonication time increased. Ultrasound treatments (10,000 and 20,000 J/g FW) increased the protein yield without affecting the foaming and air-water interfacial properties of protein isolates obtained after isoelectric precipitation (pH 4.0). However, proteins obtained after extended ultrasonication (40,000 J/g FW) had significantly slower early-stage adsorption kinetics. This was attributed to ultrasound-induced aggregation of the protease inhibitor fraction. In conclusion, ultrasonication shows potential to help overcome some challenges associated with plant protein extraction.


Asunto(s)
Proteínas de Plantas , Solanum tuberosum , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Solanum tuberosum/química , Sonicación , Cinética , Ultrasonido , Concentración de Iones de Hidrógeno
9.
J Contam Hydrol ; 265: 104382, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38861839

RESUMEN

Some Per- and polyfluoroalkyl substances (PFAS) are strongly retained in the vadose zone due to their sorption to both soils and air-water interfaces. While significant research has been dedicated to understanding equilibrium behavior for these multi-phase retention processes, leaching and desorption from aqueous film-forming foam (AFFF) impacted soils under field relevant conditions can exhibit significant deviations from equilibrium. Herein, laboratory column studies using field collected AFFF-impacted soils were employed to examine the leaching of perfluoroalkyl acids (PFAAs) under simulated rainfall conditions. The HYDRUS 1-D model was calibrated to estimate the unsaturated hydraulic properties of the soil in a layered system using multiple boundary condtions. Forward simulations of equilibrium PFAS partitioning using the HYDRUS model and simplified mass balance calculations showed good agreement with the net PFAS mass flux out of the column. However, neither were able to predict the PFAS concentrations in the leached porewater. To better understand the mechanisms controlling the leaching behavior, the HYDRUS 1-D two-site leaching model incorporating solid phase rate limitation and equilibrium air-water interfacial partitioning was employed. Three variations of the novel model incorporating different forms of equilibrium air-water interfacial partitioning were considered using built-in numerical inversion. Results of numerical inversion show that a combination of air-water interfacial collapse and rate-limited desorption from soils can better predict the unique leaching behavior exhibited by PFAAs in AFFF-impacted soils. A sensitivity analysis of the initial conditions and rate-limited desorption terms was conducted to assess the agreement of the model with measured data. The models demonstrated herein show that, under some circumstances, laboratory equilibrium partitioning data can provide a reasonable estimation of total mass leaching, but fail to account for the significant rate-limited, non-Fickian transport which affect PFAA leaching to groundwater in unsaturated soils.


Asunto(s)
Fluorocarburos , Agua Subterránea , Contaminantes del Suelo , Contaminantes Químicos del Agua , Fluorocarburos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Suelo/química , Modelos Teóricos , Adsorción , Aire , Modelos Químicos
10.
J Colloid Interface Sci ; 669: 236-247, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38718577

RESUMEN

HYPOTHESIS: Protein-based soft particles possess a unique interfacial deformation behavior, which is difficult to capture and characterize. This complicates the analysis of their interfacial properties. Here, we aim to establish how the particle deformation affects their interfacial structural and mechanical properties. EXPERIMENTS: Gliadin nanoparticles (GNPs) were selected as a model particle. We studied their adsorption behavior, the time-evolution of their morphology, and rheological behavior at the air/water interface by combining dilatational rheology and microstructure imaging. The rheology results were analyzed using Lissajous plots and quantified using the recently developed general stress decomposition (GSD) method. FINDING: Three distinct stages were revealed in the adsorption and rearrangement process. First, spherical GNPs (∼105 nm) adsorbed to the interface. Then, these gradually deformed along the interface direction to a flattened shape, and formed a firm viscoelastic 2D solid film. Finally, further stretching and merging of GNPs at the interface resulted in rearrangement of their internal structure to form a thick film with lower stiffness than the initial film. These results demonstrate that the structure of GNPs confined at the interface is controlled by their deformability, and the latter can be used to tune the properties of prolamin particle-based multiphase systems.

11.
Sci Technol Adv Mater ; 25(1): 2334667, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628979

RESUMEN

Many artificial molecular machines have been synthesized, and various functions have been expressed by changing their molecular conformations. However, their structures are still simple compared with those of biomolecular machines, and more energy is required to control them. To design artificial molecular machines with more complex structures and higher functionality, it is necessary to combine molecular machines with simple movements such as components. This means that the motion of individual molecular machines must be precisely controlled and observed in various environments. At the air - water interface, the molecular orientation and conformation can be controlled with little energy as thermal fluctuations. We designed various molecular machines and controlled them using mechanical stimuli at the air - water interface. We also controlled the transfer of forces to the molecular machines in various lipid matrices. In this review, we describe molecular pliers with amphiphilic binaphthyl, molecular paddles with binuclear platinum complexes, and molecular rotors with julolidine and BODIPY that exhibit twisted intramolecular charge transfer.


This review discusses the dependence of the behaviour of molecular machines around their environment through the mechanically control of simple molecular machines at the air ­ water interface.

12.
J Agric Food Chem ; 72(15): 8774-8783, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38587054

RESUMEN

Proteins can be adsorbed on the air-water interface (AWI), and the structural changes in proteins at the AWI are closely related to the foaming properties of foods and beverages. However, how these structural changes in proteins at the AWI occur is not well understood. We developed a method for the structural assessment of proteins in the foam state using hydrogen/deuterium exchange mass spectrometry. Adsorption sites and structural changes in human serum albumin (HSA) were identified in situ at the peptide-level resolution. The N-terminus and the loop (E492-T506), which contains hydrophobic amino acids, were identified as adsorption sites. Both the structural flexibility and hydrophobicity were considered to be critical factors for the adsorption of HSA at the AWI. Structural changes in HSA were observed after more than one minute of foaming and were spread widely throughout the structure. These structural changes at the foam AWI were reversible.


Asunto(s)
Proteínas , Albúmina Sérica Humana , Humanos , Proteínas/química , Interacciones Hidrofóbicas e Hidrofílicas , Adsorción , Propiedades de Superficie
13.
Angew Chem Int Ed Engl ; 63(27): e202403229, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38577991

RESUMEN

We present a catalyst-free route for the reduction of carbon dioxide integrated with the formation of a carbon-carbon bond at the air/water interface of negatively charged aqueous microdroplets, at ambient temperature. The reactions proceed through carbanion generation at the α-carbon of a ketone followed by nucleophilic addition to CO2. Online mass spectrometry reveals that the product is an α-ketoacid. Several factors, such as the concentration of the reagents, pressure of CO2 gas, and distance traveled by the droplets, control the kinetics of the reaction. Theoretical calculations suggest that water in the microdroplets facilitates this unusual chemistry. Furthermore, such a microdroplet strategy has been extended to seven different ketones. This work demonstrates a green pathway for the reduction of CO2 to useful carboxylated organic products.

14.
Chemosphere ; 356: 141874, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575079

RESUMEN

Organophosphate esters (OPEs) have received considerable attention in environmental research due to their extensive production, wide-ranging applications, prevalent presence, potential for bioaccumulation, and associated ecological and health concerns. Low efficiency of OPE removal results in the effluents of wastewater treatment plants emerging as a significant contributor to OPE contamination. Their notable solubility and mobility give OPEs the potential to be transported to coastal ecosystems via river discharge and atmospheric deposition. Previous research has indicated that OPEs have been widely detected in the atmosphere and water bodies. Atmospheric deposition across air-water exchange is the main input route for OPEs into the environment and ecosystems. The main processes that contribute to air-water exchange is air-water diffusion, dry deposition, wet deposition, and the air-water volatilization process. The present minireview links together the source, occurrence, and exchange of OPEs in water and air, integrates the occurrence and profile data, and summarizes their air-water exchange in the environment.


Asunto(s)
Monitoreo del Ambiente , Ésteres , Organofosfatos , Contaminantes Químicos del Agua , Ésteres/análisis , Organofosfatos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Atmosféricos/análisis , Aire/análisis , Agua/química , Aguas Residuales/química , Atmósfera/química , Ecosistema
15.
Curr Opin Struct Biol ; 86: 102823, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38688075

RESUMEN

Specimen preparation is a critical but challenging step in high-resolution cryogenic electron microscopy (cryo-EM) structural analysis of macromolecules. In the past decade, graphene has gained much recognition as the supporting substrate to optimize cryo-EM specimen preparation. It improves macromolecule embedding in ice, reduces beam-induced motion, while imposing negligible background noise. Various types of graphene-coated cryo-EM grids were implemented to improve the robustness and efficiency of specimen preparation. Graphene functionalization by different means has been proved specifically useful in addressing challenges related to the air-water interface (AWI), such as preferential orientation and sample denaturation. Graphene sandwich specimen preparation sets a new direction to explore in cryo-EM analysis of biological specimens. In this review, we discuss the current challenges and future prospects of graphene application in cryo-EM analysis of macromolecules.


Asunto(s)
Microscopía por Crioelectrón , Grafito , Microscopía por Crioelectrón/métodos , Grafito/química , Sustancias Macromoleculares/química , Manejo de Especímenes/métodos
16.
ACS Appl Mater Interfaces ; 16(9): 12052-12061, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38411063

RESUMEN

Interfaces are considered a major bottleneck in the capture of CO2 from air. Efforts to design surfaces to enhance CO2 capture probabilities are challenging due to the remarkably poor understanding of chemistry and self-assembly taking place at these interfaces. Here, we leverage surface-specific vibrational spectroscopy, Langmuir trough techniques, and simulations to mechanistically elucidate how cationic oligomers can drive surface localization of amino acids (AAs) that serve as CO2 capture agents speeding up the apparent rate of absorption. We demonstrate how tuning these interfaces provides a means to facilitate CO2 capture chemistry to occur at the interface, while lowering surface tension and improving transport/reaction probabilities. We show that in the presence of interfacial AA-rich aggregates, one can improve capture probabilities vs that of a bare interface, which holds promise in addressing climate change through the removal of CO2 via tailored interfaces and associated chemistries.

17.
Materials (Basel) ; 17(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38399093

RESUMEN

Highly transparent, conductive nanosheets are extremely attractive for advanced opto-electronic applications. Previously, we have demonstrated that transparent, conductive Au nanosheets can be prepared by UV irradiation of Au nanoparticle (AuNP) monolayers spread on water, which serves as the subphase. However, thick Au nanosheets cannot be fabricated because the method is not applicable to large Au NPs. Further, in order to fabricate nanosheets with different thicknesses and compositions, it is necessary to prepare the appropriate NPs. A strategy is needed to produce nanosheets with different thicknesses and compositions from a single type of metal NP monolayer. In this study, we show that this UV irradiation technique can easily be extended as a nanosheet modification method by using subphases containing metal ions. UV irradiation of 4.7 nm AuNP monolayers on 480 µM HAuCl4 solution increased the thickness of Au nanosheets from 3.5 nm to 36.5 nm, which improved conductivity, but reduced transparency. On the other hand, the use of aqueous AgNO3 and CH3COOAg solutions yielded Au-Ag hybrid nanosheets; however, their morphologies depended on the electrolytes used. In Au-Ag nanosheets prepared on aqueous 500 µM AgNO3, Au and Ag metals are homogeneously distributed throughout the nanosheet. On the other hand, in Au-Ag nanosheets prepared on aqueous 500 µM CH3COOAg, AuNPs still remained and these AuNPs were covered with a Ag nanosheet. Further, these Au-Ag hybrid nanosheets had high conductivity without reduced transparency. Therefore, this UV irradiation method, modified by adding metal ions, is quite effective at improving and diversifying properties of Au nanosheets.

18.
J R Soc Interface ; 21(210): 20230559, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38196377

RESUMEN

The Langmuir monolayer technique has been successfully used for decades to model biological membranes and processes occurring at their interfaces. Classically, this method involves surface pressure measurements to study interactions within membrane components as well as between external bioactive molecules (e.g. drugs) and the membrane. In recent years, surface-sensitive techniques were developed to investigate monolayers in situ; however, the obtained results are in many cases insufficient for a full characterization of biomolecule-membrane interactions. As result, description of systems using parameters such as mixing or excess thermodynamic functions is still relevant, valuable and irreplaceable in biophysical research. This review article summarizes the theory of thermodynamics of single- and multi-component Langmuir monolayers. In addition, recent applications of this approach to characterize surface behaviour and interactions (e.g. orientation of bipolar molecules, drug-membrane affinity, lateral membrane heterogeneity) are presented.


Asunto(s)
Biofisica , Membrana Celular , Termodinámica
19.
Sci Total Environ ; 917: 170456, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38296096

RESUMEN

Cigarette nicotiana alkaloids associated with lung and cardiovascular diseases attack enormous attention. However, the mechanism at the molecular level between nicotiana alkaloids and phospholipid ozonolysis remains elusive. Herein, we investigated the interfacial ozonolysis of a hung droplet containing 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) intervened by nicotiana alkaloids (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK; rac-N'-nitrosonornicotine, NNN; nicotine; and (R,S)-N-nitrosoanasabine, NAT) and followed by on-line mass spectrometry analysis. NNK and NNN showed an acceleration on the interfacial ozonolysis, while nicotine and NAT inhibited this chemistry. Such acceleration/inhibition on POPG ozonolysis was positively correlated with nicotiana alkaloid concentrations. The reaction rate constants suggested that the ozonolysis of lung phospholipids exposed to cigarette smoke at the air-water interface occurred rapidly. A possible mechanism of the hydrophilic/oleophilic nature of nicotiana alkaloids mediating the packing density of POPG was proposed. NNK and NNN with a hydrophilic nature inserted into the POPG monolayer loosed the packing, but nicotine and NAT with an oleophilic nature let the POPG closely pack and shield the CC double bonds exposed to ozone (O3). These results gain the knowledge of nicotiana alkaloids mediated phospholipid ozonolysis at the molecule level and provide a method for online interfacial reaction studies associated with elevated indoor pollutants on public health.


Asunto(s)
Alcaloides , Nitrosaminas , Ozono , Nicotiana , Nicotina , Fosfolípidos , Agua , Alcaloides/análisis , Nitrosaminas/análisis , Ozono/química , Carcinógenos/análisis
20.
Anal Sci ; 40(2): 341-345, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37938520

RESUMEN

Solvent property of air-water interface was evaluated based on the fluorescence spectra of 1,2'-dinaphthylamine in water containing ultrafine bubbles (average diameter: 103 nm, standard deviation: 38 nm). Among naphthylamine derivatives whose fluorescence spectra were responsive to microscopic hydrophobicity, 1,2'-dinaphthylamine (DN) was selected because its wavelength of the maximum emission (λmax) was significantly dependent on the concentration and microenvironment of the ultrafine bubble. The λmax value of DN in water was 486 nm, while it shifted to shorter wavelength (408 nm) in the presence of 1.09 × 109 mL-1 of ultrafine bubbles. The shift of λmax value indicates that DN adsorbs on the surfaces of ultrafine bubbles and exists in hydrophobic region rather than in bulk water. By comparing with the λmax values in different solvents, the surface of ultrafine bubble was found to have similar solvent property to ethyl ether or ethyl acetate that are widely used as extracting solvents for hydrophobic organic compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA