Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 540
Filtrar
1.
Food Chem Toxicol ; 193: 114999, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265718

RESUMEN

A clear answer on whether vaping is safe and, if not, to what degree it threatens human health and well-being, still needs to be communicated. Such an answer requires collecting, analyzing, and interpreting sometimes conflicting and indeterminate results. This paper reviews the most recently published research articles that examine vaping toxicities. It highlights the differences in the techniques employed from one paper to another. While e-cigarettes do not appear to cause the same degree of harm as cigarettes, they pose a real biological threat regarding inflammation, oxidative stress, mucociliary interference, and membrane damage. The concentration of nicotine present is directly related to these endpoints and is often higher in fourth-generation devices. However, third-generation devices can do more harm than their successors, possibly due to their high voltage and low resistance capabilities. In addition to nicotine, the flavorants used in e-cigarettes have also been shown to relate to biological stress, and the adverse health effects increase in vape formulations with higher concentrations and numbers of flavor types. Different biological models also yield different health effects, especially when comparing bronchial and alveolar cells or tissues. To universalize the results of vape experiments, researchers should seek greater consistency within the experimental design. Key methodological variables must be recognized and disclosed in future research, including puff duration and number, types of e-cigarettes and e-liquids being tested, device settings during aerosolization, and any details of the employed exposure method that may affect dosimetry.

2.
Sci Total Environ ; 951: 175727, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39181261

RESUMEN

Ultrafine particles (UFP) are the smallest atmospheric particulate matter linked to air pollution-related diseases. The extent to which UFP's physical and chemical properties contribute to its toxicity remains unclear. It is hypothesized that UFP act as carriers for chemicals that drive biological responses. This study explores robust methods for generating reference UFP to understand these mechanisms and perform toxicological tests. Two types of combustion-related UFP with similar elemental carbon cores and physical properties but different organic loads were generated and characterized. Human alveolar epithelial cells were exposed to these UFP at the air-liquid interface, and several toxicological endpoints were measured. UFP were generated using a miniCAST under fuel-rich conditions and immediately diluted to minimize agglomeration. A catalytic stripper and charcoal denuder removed volatile gases and semi-volatile particles from the surface. By adjusting the temperature of the catalytic stripper, UFP with high and low organic content was produced. These reference particles exhibited fractal structures with high reproducibility and stability over a year, maintaining similar mass and number concentrations (100 µg/m3, 2.0·105 #/cm3) and a mean particle diameter of about 40 nm. High organic content UFP had significant PAH levels, with benzo[a]pyrene at 0.2 % (m/m). Toxicological evaluations revealed that both UFP types similarly affected cytotoxicity and cell viability, regardless of organic load. Higher xenobiotic metabolism was noted for PAH-rich UFP, while reactive oxidation markers increased when semi-volatiles were stripped off. Both UFP types caused DNA strand breaks, but only the high organic content UFP induced DNA oxidation. This methodology allows modification of UFP's chemical properties while maintaining comparable physical properties, linking these variations to biological responses.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Humanos , Material Particulado/toxicidad , Hollín/toxicidad , Tamaño de la Partícula , Pruebas de Toxicidad , Exposición por Inhalación
3.
J Biomater Sci Polym Ed ; : 1-23, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190661

RESUMEN

Decellularized tissue hydrogels, especially that mimic the native tissue, have a high potential for tissue engineering, three-dimensional (3D) cell culture, bioprinting, and therapeutic agent encapsulation due to their excellent biocompatibility and ability to facilitate the growth of cells. It is important to note that the decellularization process significantly affects the structural integrity and properties of the extracellular matrix, which in turn shapes the characteristics of the resulting hydrogels at the macromolecular level. Therefore, our study aims to identify an effective chemical decellularization method for sheep lung tissue, using a mixing/agitation technique with a range of detergents, including commonly [Sodium dodecyl sulfate (SDS), Triton X-100, and 3-((3-cholamidopropyl) dimethylammonio)-1-propanesulfonate] (CHAPS), and rarely used (sodium cholate hydrate, NP-40, and 3-[N,N-Dimethyl(3-myristoylaminopropyl)ammonio]propanesulfonate) (ASB-14). After the effectiveness of the used detergents on decellularization was determined by histological and biochemical methods, lung derived decellularized extracellular matrix was converted into hydrogel. We investigated the interactions between lung cells and decellularized extracellular matrix using proliferation assay, scanning electron microscopy, and immunofluorescence microscopy methods on BEAS-2B cells in air-liquid interface. Notably, this study emphasizes the effectiveness of ASB-14 in the decellularization process, showcasing its crucial role in removing cellular components while preserving vital extracellular matrix biological macromolecules, including glycosaminoglycans, collagen, and elastin. The resulting hydrogels demonstrated favorable mechanical properties and are compatible with both cell-cell and cell-extracellular matrix interactions.

4.
J Asthma ; : 1-14, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39096201

RESUMEN

Purpose: This article illustrates the replication of asthma and COPD conditions in a laboratory setting and the potential applications of this methodology.Introduction: Biologic drugs have been shown to enhance the treatment of severe asthma and COPD. Monoclonal antibodies against specific targets have dramatically changed the management of these conditions. Although the inflammatory pathways of asthma and COPD have already been clearly outlined, alternative mechanisms of action remain mostly unexplored. They could provide additional insights into these diseases and their clinical management.Aims: In vivo or in vitro models have thus been developed to test alternative hypotheses. This study describes sophisticated ex vivo models that mimic the response of human respiratory mucosa to disease triggers, aiming to narrow the gap between laboratory studies and clinical practice.Results: These models successfully replicate crucial aspects of these diseases, such as inflammatory cell presence, cytokine production, and changes in tissue structure, offering a dynamic platform for investigating disease processes and evaluating potential treatments, such as monoclonal antibodies. The proposed models have the potential to enhance personalized medicine approaches and patient-specific treatments, helping to advance the understanding and management of respiratory diseases.

5.
Nanomaterials (Basel) ; 14(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39120378

RESUMEN

There is a need for the assessment of respiratory hazard potential and mode of action of carbon nanotubes (CNTs) before their approval for technological or medical applications. In CNT-exposed lungs, both alveolar macrophages (MФs), which phagocytose CNTs, and alveolar epithelial type II cells (AECII cells), which show tissue injury, are impacted but cell-cell interactions between them and the impacted mechanisms are unclear. To investigate this, we first optimized an air-liquid interface (ALI) transwell coculture of human AECII cell line A549 (upper chamber) and human monocyte cell line THP-1 derived macrophages (lower chamber) in a 12-well culture by exposing macrophages to CNTs at varying doses (5-60 ng/well) for 12-48 h and measuring the epithelial response markers for cell differentiation/maturation (proSP-C), proliferation (Ki-67), and inflammation (IL-1ß). In optimal ALI epithelial-macrophage coculture (3:1 ratio), expression of Ki-67 in AECII cells showed dose dependence, peaking at 15 ng/well CNT dose; the Ki-67 and IL-1ß responses were detectable within 12 h, peaking at 24-36 h in a time-course. Using the optimized ALI transwell coculture set up with and without macrophages, we demonstrated that direct interaction between CNTs and MФs, but not a physical cell-cell contact between MФ and AECII cells, was essential for inducing immunotoxicity (proliferative and inflammatory responses) in the AECII cells.

6.
PDA J Pharm Sci Technol ; 78(4): 465-474, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179400

RESUMEN

Monoclonal antibodies (mAbs) are a successful class of therapeutics, but their development can be challenging due to the risk of degradation that could happen during manufacturing, storage, and clinical use. One of the common causes of degradation is agitation stress from transportation and clinical handling, which increases interfacial stresses to mAbs. For example, the preparation of the dose solution prior to administration often requires diluting therapeutic mAbs in intravenous (IV) infusion bags containing normal saline, which can substantially reduce the level of protective surfactant and increase the level of salt in mAb solutions. Then the interfacial stress in the subsequent transportation of IV bags can cause mAb aggregation or even particle formation. To better understand the complex interplay between dilution, interfacial stress, and salt, we studied the impact of sodium chloride (NaCl) on the aggregation of two mAbs under agitation stress. We found that the presence of NaCl accelerates the aggregation of both mAbs, but the aggregation mechanism, morphology, and reversibility are very different. Our results clearly highlight the impact of salt on mAb stability at the clinical in-use condition. We believe this study further increases our understanding of protein aggregation mediated by interfacial stresses and brings valuable insights to support development of mAb formulations for patients.


Asunto(s)
Anticuerpos Monoclonales , Agregado de Proteínas , Cloruro de Sodio , Cloruro de Sodio/química , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Estabilidad de Medicamentos , Humanos , Estabilidad Proteica , Composición de Medicamentos/métodos , Infusiones Intravenosas
7.
Toxicol In Vitro ; 100: 105889, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38971396

RESUMEN

Experimental systems allowing aerosol exposure (AE) of cell cultures at the air-liquid-interface (ALI) are increasingly being used to assess the toxicity of inhaled contaminants as they are more biomimetic than standard methods using submerged cultures, however, they require detailed characterisation before use. An AE-ALI system combining aerosol generation with a CULTEX® exposure chamber was characterised with respect to particle deposition and the cellular effects of filtered air (typical control) exposures. The effect of system parameters (electrostatic precipitator voltage, air flowrate to cells and insert size) on deposition efficiency and spatial distribution were investigated using ICP-MS and laser ablation ICP-MS, for an aerosol of CeO2 nanoparticles. Deposition varied with conditions, but appropriate choice of operating parameters produced broadly uniform deposition at suitable levels. The impact of air exposure duration on alveolar cells (A549) and primary small airway epithelial cells (SAECs) was explored with respect to LDH release and expression of selected genes. Results indicated that air exposures could have a significant impact on cells (e.g., cytotoxicity and expression of genes, including CXCL1, HMOX1, and SPP1) at relatively short durations (from 10 mins) and that SAECs were more sensitive. These findings indicate that detailed system characterisation is essential to ensure meaningful results.


Asunto(s)
Aerosoles , Humanos , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Cerio/toxicidad , Técnicas de Cultivo de Célula , Células Cultivadas , Pruebas de Toxicidad/métodos , Tamaño de la Partícula , Nanopartículas/toxicidad , L-Lactato Deshidrogenasa/metabolismo , Células A549
8.
Microbiol Spectr ; 12(9): e0116424, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39078148

RESUMEN

Human parainfluenza virus (HPIV) causes respiratory infections, which are exacerbated in children and older people. Correct evaluation of viral characteristics is essential for the study of countermeasures. However, adaptation of viruses to cultured cells during isolation or propagation might select laboratory passage-associated mutations that modify the characteristics of the virus. It was previously reported that adaptation of HPIV3, but not other HPIVs, was avoided in human airway epithelia. To examine the influence of laboratory passage on the genomes of HPIV1-HPIV4, we evaluated the occurrence of mutations after passage in primary human bronchial/tracheal epithelial cell air-liquid interface (HBTEC-ALI) culture and conventional cultured cells (Vero cells expressing the transmembrane protease, serine 2, and normal Vero cells). The occurrence of mutations was significantly lower in HBTEC-ALI than in conventional culture. In HBTEC-ALI culture, most of the mutations were silent or remained at low variant frequency, resulting in less impact on the viral consensus sequence. In contrast, passage in conventional culture induced or selected genetic mutations at high frequency with passage-associated unique substitutions. High mutagenesis of hemagglutinin-neuraminidase was commonly observed in all four HPIVs, and mutations even occurred in a single passage. In addition, in HPIV1 and HPIV2, mutations in the large protein were more frequent. These results indicate that passage in HBTEC-ALI culture is more suitable than conventional culture for maintaining the original characteristics of clinical isolates in all four HPIVs, which can help with the understanding of viral pathogenesis. IMPORTANCE: Adaptation of viruses to cultured cells can increase the risk of misinterpretation in virological characterization of clinical isolates. In human parainfluenza virus (HPIV) 3, it has been reported that the human airway epithelial and lung organoid models are preferable for the study of viral characteristics of clinical strains without mutations. Therefore, we analyzed clinical isolates of all four HPIVs for the occurrence of mutations after five laboratory passages in human bronchial/tracheal epithelial cell air-liquid interface (HBTEC-ALI) or conventional culture. We found a high risk of hemagglutinin-neuraminidase mutagenesis in all four HPIVs in conventional cultured cells. In addition, in HPIV1 and HPIV2, mutations of the large protein were also more frequent in conventional cultured cells than in HBTEC-ALI culture. HBTEC-ALI culture was useful for maintaining the original sequence and characteristics of clinical isolates in all four HPIVs. The present study contributes to the understanding of HPIV pathogenesis and antiviral strategies.


Asunto(s)
Bronquios , Células Epiteliales , Mutación , Humanos , Chlorocebus aethiops , Células Vero , Bronquios/virología , Bronquios/citología , Animales , Células Epiteliales/virología , Tráquea/virología , Tráquea/citología , Virus de la Parainfluenza 3 Humana/genética , Virus de la Parainfluenza 3 Humana/fisiología , Cultivo de Virus/métodos , Virus de la Parainfluenza 1 Humana/genética , Virus de la Parainfluenza 2 Humana/genética , Virus de la Parainfluenza 2 Humana/crecimiento & desarrollo , Línea Celular , Pase Seriado , Respirovirus/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-39012815

RESUMEN

We broaden the clinical versatility of human nasal epithelial (HNE) cells. HNEs were isolated from 10 participants harboring CFTR variants: nine with rare variants (Q359R [n=2], G480S, R334W [n=5], and R560T) and one person harboring R117H;7T;TG10/5T;TG12. Cultures were differentiated at air-liquid interface. CFTR function was measured in Ussing chambers at three conditions - baseline, ivacaftor, and elexacaftor+tezacaftor+ivacaftor (ETI). Four participants initiated modulators. Q359R HNEs had 5.4% (%WT) baseline CFTR function and 25.5% with ivacaftor. With therapy, sweat [Cl-] decreased and symptoms resolved. G480S HNEs had 4.1% baseline and 32.1% CFTR function with ETI. Clinically, FEV1 increased and sweat [Cl-] decreased (119 to 46mmol/L) with ETI. In vitro cultures derived from five individuals harboring R334W showed a moderate increase in CFTR function with exposure to modulators. For one of these participants, ETI was begun in vivo; symptoms and FEV1 improved. c.1679G>C (R560T) HNEs had <4% baseline CFTR function and no modulator response. RNA analysis confirmed that c.1679G>C completely mis-splices. A symptomatic patient harboring R117H;7T;TG10/5T;TG12 exhibited reduced CFTR function (17.5%) in HNEs, facilitating mild CF diagnosis. HNEs responded to modulators (ivacaftor: 32.8%, ETI: 55.5%) and, since beginning therapy, lung function improved. While reaffirming HNE use for guiding therapeutic approaches, we inform predictions on modulator response (e.g. R334W) and closely assess variants affecting splicing (e.g. c.1679G>C). Notably, functional studies in HNEs harboring R117H;7T;TG10/5T;TG12 facilitated mild CF diagnosis, suggesting use for HNE functional studies as a clinical diagnostic test.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39054009

RESUMEN

The human in vitro organotypic air-liquid-interface (ALI) airway tissue model is structurally and functionally similar to the human large airway epithelium and, as a result, is being used increasingly for studying the toxicity of inhaled substances. Our previous research demonstrated that DNA damage and mutagenesis can be detected in human airway tissue models under conditions used to assess general and respiratory toxicity endpoints. Expanding upon our previous proof-of-principle study, human airway epithelial tissue models were treated with 6.25-100 µg/mL ethyl methanesulfonate (EMS) for 28 days, followed by a 28-day recovery period. Mutagenesis was evaluated by Duplex Sequencing (DS), and clonal expansion of bronchial-cancer-specific cancer-driver mutations (CDMs) was investigated by CarcSeq to determine if both mutation-based endpoints can be assessed in the same system. Additionally, DNA damage and tissue-specific responses were analyzed during the treatment and following the recovery period. EMS exposure led to time-dependent increases in mutagenesis over the 28-day treatment period, without expansion of clones containing CDMs; the mutation frequencies remained elevated following the recovery. EMS also produced an increase in DNA damage measured by the CometChip and MultiFlow assays and the elevated levels of DNA damage were reduced (but not eliminated) following the recovery period. Cytotoxicity and most tissue-function changes induced by EMS treatment recovered to control levels, the exception being reduced proliferating cell frequency. Our results indicate that general, respiratory-tissue-specific and genotoxicity endpoints increased with repeat EMS dosing; expansion of CDM clones, however, was not detected using this repeat treatment protocol. DISCLAIMER: This article reflects the views of its authors and does not necessarily reflect those of the U.S. Food and Drug Administration. Any mention of commercial products is for clarification only and is not intended as approval, endorsement, or recommendation.


Asunto(s)
Daño del ADN , Metanosulfonato de Etilo , Mutación , Humanos , Metanosulfonato de Etilo/farmacología , Metanosulfonato de Etilo/toxicidad , Mutación/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Mutagénesis/efectos de los fármacos , Mutágenos/toxicidad , Bronquios/efectos de los fármacos , Bronquios/citología
11.
Cancer Innov ; 3(1): e101, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38948532

RESUMEN

In recent years, the three-dimensional (3D) culture system has emerged as a promising preclinical model for tumor research owing to its ability to replicate the tissue structure and molecular characteristics of solid tumors in vivo. This system offers several advantages, including high throughput, efficiency, and retention of tumor heterogeneity. Traditional Matrigel-submerged organoid cultures primarily support the long-term proliferation of epithelial cells. One solution for the exploration of the tumor microenvironment is a reconstitution approach involving the introduction of exogenous cell types, either in dual, triple or even multiple combinations. Another solution is a holistic approach including patient-derived tumor fragments, air-liquid interface, suspension 3D culture, and microfluidic tumor-on-chip models. Organoid co-culture models have also gained popularity for studying the tumor microenvironment, evaluating tumor immunotherapy, identifying predictive biomarkers, screening for effective drugs, and modeling infections. By leveraging these 3D culture systems, it is hoped to advance the clinical application of therapeutic approaches and improve patient outcomes.

12.
Sci Rep ; 14(1): 16849, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039235

RESUMEN

The colonic epithelium is comprised of three-dimensional crypts (3D) lined with mucus secreted by a heterogeneous population of goblet cells. In this study, we report the formation of a long-lived, and self-renewing replica of human 3D crypts with a mucus layer patterned in the X-Y-Z dimensions. Primary colon cells were cultured on a shaped scaffold under an air-liquid interface to yield architecturally accurate crypts with a mucus bilayer (605 ± 180 µm thick) possessing an inner (149 ± 50 µm) and outer (435 ± 111 µm) region. Lectins with distinct carbohydrate-binding preferences demonstrated that the mucus in the intercrypt regions was chemically distinct from that above and within the crypts replicating in vivo chemical patterning. Constitutive mucus secretion ejected beads from crypt lumens in 8-10 days, while agonist-stimulated secretion increased mucus thickness by 17-fold in 8 h. The tissue was long-lived, > 50 days, the longest time assessed. In conclusion, the in vitro mucus replicated key physiology of the human mucus, including the bilayer (Z) structure and intercrypt-crypt (X-Y) zones, constitutive mucus flow, spatially complex chemical attributes, and mucus secretion response to stimulation, with the potential to reveal local and global determinants of mucus function and its breakdown in disease.


Asunto(s)
Colon , Moco , Humanos , Moco/metabolismo , Colon/metabolismo , Mucosa Intestinal/metabolismo , Células Cultivadas , Modelos Biológicos , Células Caliciformes/metabolismo
13.
Chemosphere ; 363: 142958, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39069102

RESUMEN

Recently, Sustainable Aviation Fuel (SAF) blends and novel combustion technologies have been introduced to reduce aircraft engine emissions. However, there is limited knowledge about the impact of combustion technology and fuel composition on toxicity of primary Particulate Matter (PM) emissions, comparable to regulated non-volatile PM (nvPM). In this study, primary PM was collected on filters using a standardised approach, from both a Rich-Quench-Lean (RQL) combustion rig and a bespoke liquid fuelled Combustion Aerosol Standard (CAST) Generator burning 12 aviation fuels including conventional Jet-A, SAFs, and blends thereof. The fuels varied in aromatics (0-25.2%), sulphur (0-3000 ppm) and hydrogen (13.43-15.31%) contents. Toxicity of the collected primary PM was studied in vitro utilising Air-Liquid Interface (ALI) exposure of lung epithelial cells (Calu-3) in monoculture and co-culture with macrophages (differentiated THP-1 cells). Cells were exposed to PM extracted from filters and nebulised from suspensions using a cloud-based ALI exposure system. Toxicity readout parameters were analysed 24 h after exposure. Results showed presence of genotoxicity and changes in gene expression at dose levels which did not induce cytotoxicity. DNA damage was detected through Comet assay in cells exposed to CAST generated samples. Real-Time PCR performed to investigate the expression profile of genes involved in oxidative stress and DNA repair pathways showed different behaviours after exposure to the various PM samples. No differences were found in pro-inflammatory interleukin-8 secretion. This study indicates that primary PM toxicity is driven by wider factors than fuel composition, highlighting that further work is needed to substantiate the full toxicity of aircraft exhaust PM inclusive of secondary PM emanating from numerous engine technologies across the power range burning conventional Jet-A and SAF.


Asunto(s)
Contaminantes Atmosféricos , Aeronaves , Daño del ADN , Material Particulado , Emisiones de Vehículos , Material Particulado/toxicidad , Material Particulado/análisis , Humanos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Línea Celular , Macrófagos/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Aerosoles/toxicidad , Aerosoles/análisis , Aviación
14.
Am J Respir Cell Mol Biol ; 71(3): 267-281, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38843491

RESUMEN

The human airway mucociliary epithelium can be recapitulated in vitro using primary cells cultured in an air-liquid interface (ALI), a reliable surrogate to perform pathophysiological studies. As tremendous variations exist among media used for ALI-cultured human airway epithelial cells, the aim of our study was to evaluate the impact of several media (BEGM, PneumaCult, Half & Half, and Clancy) on cell type distribution using single-cell RNA sequencing and imaging. Our work revealed the impact of these media on cell composition, gene expression profile, cell signaling, and epithelial morphology. We found higher proportions of multiciliated cells in PneumaCult-ALI and Half & Half, stronger EGF signaling from basal cells in BEGM-ALI, differential expression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry factor ACE2, and distinct secretome transcripts depending on the media used. We also established that proliferation in PneumaCult-Ex Plus favored secretory cell fate, showing the key influence of proliferation media on late differentiation epithelial characteristics. Altogether, our data offer a comprehensive repertoire for evaluating the effects of culture conditions on airway epithelial differentiation and will aid in choosing the most relevant medium according to the processes to be investigated, such as cilia, mucus biology, or viral infection. We detail useful parameters that should be explored to document airway epithelial cell fate and morphology.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Epiteliales , Mucosa Respiratoria , Humanos , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/citología , Regeneración , Células Cultivadas , SARS-CoV-2 , COVID-19/virología , COVID-19/patología , COVID-19/metabolismo , Técnicas de Cultivo de Célula/métodos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Medios de Cultivo
15.
Viruses ; 16(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38932148

RESUMEN

The devastating effects of COVID-19 have highlighted the importance of prophylactic and therapeutic strategies to combat respiratory diseases. Stimulator of interferon gene (STING) is an essential component of the host defense mechanisms against respiratory viral infections. Although the role of the cGAS/STING signaling axis in the innate immune response to DNA viruses has been thoroughly characterized, mounting evidence shows that it also plays a key role in the prevention of RNA virus infections. In this study, we investigated the role of STING activation during Influenza virus (IFV) infection. In both mouse bone marrow-derived macrophages and monocytic cell line THP-1 differentiated with PMA, we found that dimeric amidobenzimidazole (diABZI), a STING agonist, had substantial anti-IFV activity against multiple strains of IFV, including A/H1N1, A/H3N2, B/Yamagata, and B/Victoria. On the other hand, a pharmacological antagonist of STING (H-151) or the loss of STING in human macrophages leads to enhanced viral replication but suppressed IFN expression. Furthermore, diABZI was antiviral against IFV in primary air-liquid interface cultures of nasal epithelial cells. Our data suggest that STING agonists may serve as promising therapeutic antiviral agents to combat IFV.


Asunto(s)
Antivirales , Inmunidad Innata , Macrófagos , Proteínas de la Membrana , Animales , Humanos , Inmunidad Innata/efectos de los fármacos , Ratones , Antivirales/farmacología , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/virología , Proteínas de la Membrana/agonistas , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Células THP-1 , Replicación Viral/efectos de los fármacos , Gripe Humana/inmunología , Gripe Humana/virología , Gripe Humana/tratamiento farmacológico , Perros , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Orthomyxoviridae/efectos de los fármacos , Orthomyxoviridae/inmunología , Orthomyxoviridae/fisiología , Bencimidazoles/farmacología , Transducción de Señal/efectos de los fármacos
16.
J Gen Virol ; 105(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38922678

RESUMEN

Highly pathogenic avian influenza (HPAI) H5N1 viruses are responsible for disease outbreaks in wild birds and poultry, resulting in devastating losses to the poultry sector. Since 2020, an increasing number of outbreaks of HPAI H5N1 was seen in wild birds. Infections in mammals have become more common, in most cases in carnivores after direct contact with infected birds. Although ruminants were previously not considered a host species for HPAI viruses, in March 2024 multiple outbreaks of HPAI H5N1 were detected in goats and cattle in the United States. Here, we have used primary bronchus-derived well-differentiated bovine airway epithelial cells (WD-AECs) cultured at air-liquid interface to assess the susceptibility and permissiveness of bovine epithelial cells to infection with European H5N1 virus isolates. We inoculated bovine WD-AECs with three low-passage HPAI clade 2.3.4.4b H5N1 virus isolates and detected rapid increases in viral genome loads and infectious virus during the first 24 h post-inoculation, without substantial cytopathogenic effects. Three days post-inoculation infected cells were still detectable by immunofluorescent staining. These data indicate that multiple lineages of HPAI H5N1 may have the propensity to infect the respiratory tract of cattle and support extension of avian influenza surveillance efforts to ruminants. Furthermore, this study underscores the benefit of WD-AEC cultures for pandemic preparedness by providing a rapid and animal-free assessment of the host range of an emerging pathogen.


Asunto(s)
Células Epiteliales , Subtipo H5N1 del Virus de la Influenza A , Replicación Viral , Animales , Bovinos , Células Epiteliales/virología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/fisiología , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Células Cultivadas
17.
Nanomaterials (Basel) ; 14(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38921915

RESUMEN

Langmuir-Blodgett (LB) film technology is an advanced technique for the preparation of ordered molecular ultra-thin films at the molecular level, which transfers a single layer of film from the air/water interface to a solid substrate for the controlled assembly of molecules. LB technology has continually evolved over the past century, revealing its potential applications across diverse fields. In this study, the latest research progress of LB film technology is reviewed, with emphasis on its latest applications in gas sensors, electrochemical devices, and bionic films. Additionally, this review evaluates the strengths and weaknesses of LB technology in the application processes and discusses the promising prospects for future application of LB technology.

18.
Biofactors ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886986

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to angiotensin-converting enzyme 2 (ACE2) on host cells, via its spike protein, and transmembrane protease, serine 2 (TMPRSS2) cleaves the spike-ACE2 complex to facilitate virus entry. As rate-limiting steps for virus entry, modulation of ACE2 and/or TMPRSS2 may decrease SARS-CoV-2 infectivity and COVID-19 severity. In silico modeling suggested the natural bioactive flavonoid quercetin can bind to ACE2 and a recent randomized clinical trial demonstrated that oral supplementation with quercetin increased COVID-19 recovery. A range of cultured human cells were assessed for co-expression of ACE2 and TMPRSS2. Immortalized Calu-3 lung cells, cultured and matured at an air-liquid interface (Calu-3-ALIs), were established as the most appropriate. Primary bronchial epithelial cells (PBECs) were obtained from healthy adult males (N = 6) and cultured under submerged conditions to corroborate the outcomes. Upon maturation or reaching 80% confluence, respectively, the Calu-3-ALIs and PBECs were treated with quercetin, and mRNA and protein expression were assessed by droplet digital PCR and ELISA, respectively. SARS-CoV-2 infectivity, and the effects of pre- and co-treatment with quercetin, was assessed by median tissue culture infectious dose assay. Quercetin dose-dependently decreased ACE2 and TMPRSS2 mRNA and protein in both Calu-3-ALIs and PBECs after 4 h, while TMPRSS2 remained suppressed in response to prolonged treatment with lower doses (twice daily for 3 days). Quercetin also acutely decreased ADAM17 mRNA, but not ACE, in Calu-3-ALIs, and this warrants further investigation. Calu-3-ALIs, but not PBECs, were successfully infected with SARS-CoV-2; however, quercetin had no antiviral effect, neither directly nor indirectly through downregulation of ACE2 and TMPRSS2. Calu-3-ALIs were reaffirmed to be an optimal cell model for research into the regulation of ACE2 and TMPRSS2, without the need for prior genetic modification, and will prove valuable in future coronavirus and respiratory infectious disease work. However, our data demonstrate that a significant decrease in the expression of ACE2 and TMPRSS2 by a promising prophylactic candidate may not translate to infection prevention.

19.
Methods Mol Biol ; 2813: 137-144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38888776

RESUMEN

Air-liquid interface (ALI) airway culture models serve as a powerful tool to emulate the characteristic features of the respiratory tract in vitro. These models are particularly valuable for studying emerging respiratory viral and bacterial infections. Here, we describe an optimized protocol to obtain the ALI airway culture models using normal human bronchial epithelial cells (NHBECs). The protocol outlined below enables the generation of differentiated mucociliary airway epithelial cultures by day 28 following exposure to air.


Asunto(s)
Técnicas de Cultivo de Célula , Células Epiteliales , Humanos , Técnicas de Cultivo de Célula/métodos , Células Epiteliales/microbiología , Células Epiteliales/virología , Células Epiteliales/citología , Bronquios/citología , Mucosa Respiratoria/citología , Mucosa Respiratoria/microbiología , Mucosa Respiratoria/virología , Aire , Células Cultivadas , Enfermedades Transmisibles/microbiología
20.
Biofabrication ; 16(3)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38788705

RESUMEN

Fabrication of engineered intestinal tissues with the structures and functions as humans is crucial and promising as the tools for developing drugs and functional foods. The aim of this study is to fabricate an engineered intestinal tissue from Caco-2 cells by air-liquid interface culture using a paper-based dual-layer scaffold and analyze its structure and functions. Just by simply placing on a folded paper soaked in the medium, the electrospun gelatin microfiber mesh as the upper cell adhesion layer of the dual-layer scaffold was exposed to the air, while the lower paper layer worked to preserve and supply the cell culture medium to achieve stable culture over several weeks. Unlike the flat tissue produced using the conventional commercial cultureware, Transwell, the engineered intestinal tissue fabricated in this study formed three-dimensional villous architectures. Microvilli and tight junction structures characteristic of epithelial tissue were also formed at the apical side. Furthermore, compared to the tissue prepared by Transwell, mucus production was significantly larger, and the enzymatic activities of drug metabolism and digestion were almost equivalent. In conclusion, the air-liquid interface culture using the paper-based dual-layer scaffold developed in this study was simple but effective in fabricating the engineered intestinal tissue with superior structures and functions.


Asunto(s)
Moco , Papel , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Humanos , Células CACO-2 , Moco/metabolismo , Intestinos/citología , Intestinos/fisiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Aire , Técnicas de Cultivo de Célula/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA