Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Intervalo de año de publicación
1.
Heliyon ; 9(11): e21215, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37964818

RESUMEN

Transformation of agriculture to realise sustainable site-specific management requires comprehensive scientific support based on field experiments to capture the complex agroecological process, incite new policies and integrate them into farmers' decisions. However, current experimental approaches are limited in addressing the wide spectrum of sustainable agroecosystem and landscape characteristics and in supplying stakeholders with suitable solutions and measures. This review identifies major constraints in current field experimentation, such as a lack of consideration of multiple processes and scales and a limited ability to address interactions between them. It emphasizes the urgent need to establish a new category of landscape experimentation that empowers agricultural research on sustainable agricultural systems, aiming at elucidating interactions among various landscape structures and functions, encompassing both natural and anthropogenic features. It extensively discusses the key characteristics of landscape experiments and major opportunities to include them in the agricultural research agenda. In particular, simultaneously considering multiple factors, and thus processes at different scales and possible synergies or antagonisms among them would boost our understanding of heterogeneous agricultural landscapes. We also highlight that though various studies identified promising approaches with respect to experimental design and data analysis, further developments are still required to build a fully functional and integrated framework for landscape experimentation in agricultural settings.

2.
Data Brief ; 49: 109442, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37554995

RESUMEN

This dataset holds 9,175 entries that report the nitrogen, phosphorus, potassium, calcium, magnesium, zinc, manganese, copper and boron contents of various plant species, with a focus on crops. The dataset accounts data of 94 plant species, and present nutrient concentration of 14 different plant tissues. The data are derived from the Soil and Plant Nutrition Lab of the Chilean Agricultural Research Institute, which provided services to farmers in the Chilean Central Valley between 2006 and 2020. The analytical methods used to generate these data were consistent across all years, ensuring the reliability of the information. Specifically, nitrogen content was determined using the Kjeldahl method, while all other analytes were quantified via colorimetry (phosphorus and boron) or atomic absorption spectrometry following high-temperature oxidation and dilution of the ashes with hydrochloric acid. The dataset has numerous potential applications, including the estimation of crop nutrient extraction rates, the identification of nutrient deficiencies or excesses, and the provision of reference or prior information for researchers studying plant physiology. The dataset includes 21 Chilean endemic species, which might be of particular interest to researchers studying the biodiversity and ecology of Chile's Central Valley.

3.
Field Crops Res ; 291: 108791, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36742349

RESUMEN

Intensive rice (Oryza sativa)-based cropping systems in south Asia provide much of the calorie and protein requirements of low to middle-income rural and urban populations. Intensive tillage practices demand more resources, damage soil quality, and reduce crop yields and profit margins. Crop diversification along with conservation agriculture (CA)-based management practices may reduce external input use, improve resource-use efficiency, and increase the productivity and profitability of intensive cropping systems. A field study was conducted on loamy soil in a sub-tropical climate in northern Bangladesh to evaluate the effects of three tillage options and six rice-based cropping sequences on grain, calorie, and protein yields and gross margins (GM) for different crops and cropping sequences. The three tillage options were: (1) conservation agriculture (CA) with all crops in sequences untilled, (2) alternating tillage (AT) with the monsoon season rice crop tilled but winter season crops untilled, and (3) conventional tillage (CT) with all crops in sequences tilled. The six cropping sequences were: rice-rice (R-R), rice-mung bean (Vigna radiata) (R-MB), rice-wheat (Triticum aestivum) (R-W), rice-maize (Zea mays) (R-M), rice-wheat-mung bean (R-W-MB), and rice-maize-mung bean (R-M-MB). Over three years of experimentation, the average monsoon rice yield was 8% lower for CA than CT, but the average winter crops yield was 13% higher for CA than CT. Systems rice equivalent yield (SREY) and systems calorie and protein yields were about 5%, 3% and 6%, respectively, higher under CA than CT; additionally, AT added approximately 1% more to these benefits. The systems productivity gain under CA and AT resulted in higher GM by 16% while reducing the labor and total production cost under CA than CT. The R-M rotation had higher SREY, calorie, protein yields, and GM by 24%, 26%, 66%, and 148%, respectively, than the predominantly practiced R-R rotation. The R-W-MB rotation had the highest SREY (30%) and second highest (118%) GM. Considering the combined effect of tillage and cropping system, CA with R-M rotation showed superior performance in terms of SREY, protein yield, and GM. The distribution of labor use and GM across rotations was grouped into four categories: R-W in low-low (low labor use and low GM), R-M in low-high (low labor use and high GM), R-W-MB and R-M-MB in high-high (high labor use and high GM) and R-R and R-MB in high-low (high labor use and low GM). In conclusion, CA performed better than CT in different winter crops and cropping systems but not in monsoon rice. Our results demonstrate the multiple benefits of partial and full CA-based tillage practices employed with appropriate crop diversification to achieve sustainable food security with greater calorie and protein intake while maximizing farm profitability of intensive rice-based rotational systems.

4.
GeoJournal ; 88(1): 209-224, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35194299

RESUMEN

Climate change and its impacts on agriculture have been widely discussed at national and global levels. An important aspect of the discussion has been adaptation/mitigation approaches. Consequently, several strategies have been suggested as measures to ensure agriculture remains productively profitable. However, food security especially in critical times, such as the lockdown during the COVID-19 pandemic proved to be a challenge even for regions naturally endowed for agriculture. The study evaluated research recommended strategies, and further examined the innovativeness of the strategies in fostering sustainable agricultural innovation system (AIS) in the Niger Delta. The study relied on both secondary and primary data; analysed 129 previous studies and gathered responses from 282 extension agents. The study introduces a method for assessing the innovativeness of strategies by calculating their rated values on five traits. Findings revealed the issues and implications of adopting most recommended strategies and the place of most strategies in fostering AIS. The study highlights the possible reasons why farmers fail to adopt most strategies as suggested by studies on climate change in the region. Based on the findings, recommendations were made on the way forward. The study adds to the scanty discussion of climate change and AIS at regional levels, particularly in the climate change prone and oil rich Niger Delta region. The study offers a novel approach for scoring innovations in agriculture.

5.
Third World Q ; 43(8): 1970-1987, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935539

RESUMEN

Historical concerns over the exploitation of the Global South's genetic biodiversity framed the importance of creating global governance mechanisms to ensure fair access to and benefit-sharing of genetic resources worldwide. The Convention on Biological Diversity (CBD) and International Treaty on Plant Genetic Resources for Food and Agriculture (Plant Treaty) came into existence over the past three decades to redress the centuries of genetic exploitation of the Global South. Both of the treaties explicitly regulate and facilitate the exchange of physical genetic material. The recent emergence of relevant digital technologies, such as digital sequencing information (DSI), could make both treaties irrelevant. This article analyses the current state of the CBD and Plant Treaty as it relates to global agricultural research in light of DSI. I argue that DSI presents less of a threat to exacerbating historical gene flows than it does to the further displacement of public sector research by the private sector. The article then suggests looking at the lessons from open-source approaches to counter the privatisation of DSI and related gene flows. I draw on 11 key informant interviews with country negotiators involved with the CBD and Plant Treaty as well as a review of official reports from both frameworks.

6.
Eval Program Plann ; 94: 102127, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35803067

RESUMEN

Performance-based funding and calls for public-funded science to demonstrate societal impact are encouraging public research organisations to evaluate impact, the so-called impact agenda. This paper explores evaluation methods of four fully or partially public-funded agricultural research organisations and how they are building evaluative capacity to respond to the impact agenda. Drawing on cross-organisational comparison of the readiness of each organisation to implement evaluation, the implications for improving evaluative capacity building (ECB) are discussed. This study extends the current literature on ECB, as very little has focussed on research organisations in general, and particularly agricultural research. Driven by the impact agenda, the organisations are beginning to emphasise summative evaluation. Organisational leaders valuing the demonstration of impact and commitment to building evaluation capacity are important precursors to other aspects of organisational readiness to implement evaluation. However, organisational emphasis remains on using evaluation for accountability and to improve efficiency and allocation of funding. The organisations have yet to systematically embed evaluation processes and capabilities for learning at programme and organisation-levels. There is, therefore, an opportunity to develop organisation and programme-level evaluation processes that inform each other and the pathways to impact from science. To realise this opportunity, organisations could strengthen internal and external networks of evaluation practitioners and academics to bridge the gap between the theory and practice of monitoring and evaluation for learning (MEL) and to begin to reshape organisational culture by using evaluation methods that are grounded in co-production and integrated scientific and societal values.


Asunto(s)
Creación de Capacidad , Humanos , Irlanda , Nueva Zelanda , Evaluación de Programas y Proyectos de Salud , España , Uruguay
7.
One Health ; 14: 100400, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35601224

RESUMEN

The emergence of the COVID-19 pandemic reinforced the central role of the One Health (OH) approach, as a multisectoral and multidisciplinary perspective, to tackle health threats at the human-animal-environment interface. This study assessed Brazilian preparedness and response to COVID-19 and zoonoses with a focus on the OH approach and equity dimensions. We conducted an environmental scan using a protocol developed as part of a multi-country study. The article selection process resulted in 45 documents: 79 files and 112 references on OH; 41 files and 81 references on equity. The OH and equity aspects are poorly represented in the official documents regarding the COVID-19 response, either at the federal and state levels. Brazil has a governance infrastructure that allows for the response to infectious diseases, including zoonoses, as well as the fight against antimicrobial resistance through the OH approach. However, the response to the pandemic did not fully utilize the resources of the Brazilian state, due to the lack of central coordination and articulation among the sectors involved. Brazil is considered an area of high risk for emergence of zoonoses mainly due to climate change, large-scale deforestation and urbanization, high wildlife biodiversity, wide dry frontier, and poor control of wild animals' traffic. Therefore, encouraging existing mechanisms for collaboration across sectors and disciplines, with the inclusion of vulnerable populations, is required for making a multisectoral OH approach successful in the country.

8.
Glob Food Sec ; 33: 100619, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35282386

RESUMEN

Severe price spikes of the major grain commodities and rapid expansion of cultivated area in the past two decades are symptoms of a severely stressed global food supply. Scientific discovery and improved agricultural productivity are needed and are enabled by unencumbered access to, and use of, genetic sequence data. In the same way the world witnessed rapid development of vaccines for COVID-19, genetic sequence data afford enormous opportunities to improve crop production. In addition to an enabling regulatory environment that allowed for the sharing of genetic sequence data, robust funding fostered the rapid development of coronavirus diagnostics and COVID-19 vaccines. A similar level of commitment, collaboration, and cooperation is needed for agriculture.

9.
Sci Total Environ ; 806(Pt 3): 150718, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34606855

RESUMEN

Agriculture provides the largest share of food supplies and ensures a critical number of ecosystem services (e.g., food provisioning). Therefore, agriculture is vital for food security and supports the Sustainable Development Goal (SDGs) 2 (SDG 2 - zero hunger) as others SDG's. Several studies have been published in different world areas with different research directions focused on increasing food and nutritional security from an agricultural land system perspective. The heterogeneity of the agricultural research studies calls for an interdisciplinary and comprehensive systematization of the different research directions and the plethora of approaches, scales of analysis, and reference data used. Thus, this work aims to systematically review the contributions of the different agricultural research studies by systematizing the main research fields and present a synthesis of the diversity and scope of research and knowledge. From an initial search of 1151 articles, 260 meet the criteria to be used in the review. Our analysis revealed that most articles were published between 2015 and 2019 (59%), and most of the case studies were carried out in Asia (36%) and Africa (20%). The number of studies carried out in the other continents was lower. In the last 30 years, most of the research was centred in six main research fields: land-use changes (28%), agricultural efficiency (27%), climate change (16%), farmer's motivation (12%), urban and peri-urban agriculture (11%), and land suitability (7%). Overall, the research fields identified are directly or indirectly linked to 11 of the 17 SDGs. There are essential differences in the number of articles among research fields, and future efforts are needed in the ones that are less represented to support food security and the SDGs.


Asunto(s)
Ecosistema , Desarrollo Sostenible , Agricultura , Seguridad Alimentaria , Abastecimiento de Alimentos
10.
Gates Open Res ; 6: 3, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37398911

RESUMEN

Background: Molecular breeding is an essential tool for accelerating genetic gain in crop improvement towards meeting the need to feed an ever-growing world population. Establishing low-cost, flexible genotyping platforms in small, public and regional laboratories can stimulate the application of molecular breeding in developing countries. These laboratories can serve plant breeding projects requiring low- to medium-density markers for marker-assisted selection (MAS) and quality control (QC) activities. Methods: We performed two QC and MAS experiments consisting of 637 maize lines, using an optimised genotyping workflow involving an in-house competitive allele-specific PCR (KASP) genotyping system with an optimised sample collection, preparation, and DNA extraction and quantitation process. A smaller volume of leaf-disc size plant samples was collected directly in 96-well plates for DNA extraction, using a slightly modified CTAB-based DArT DNA extraction protocol. DNA quality and quantity analyses were performed using a microplate reader, and the KASP genotyping and data analysis was performed in our laboratory. Results: Applying the optimized genotyping workflow expedited the QC and MAS experiments from over five weeks (when outsourcing) to two weeks and eliminated the shipping cost. Using a set of 28 KASP single nucleotide polymorphisms (SNPs) validated for maize, the QC experiment revealed the genetic identity of four maize varieties taken from five seed sources. Another set of 10 KASP SNPs was sufficient in verifying the parentage of 390 F 1 lines. The KASP-based MAS was successfully applied to a maize pro-vitamin A (PVA) breeding program and for introgressing the aflatoxin resistance gene into elite tropical maize lines. Conclusion: This improved workflow has helped accelerate maize improvement activities of IITA's Maize Improvement Program and facilitated DNA fingerprinting for tracking improved crop varieties. National Agricultural Research Systems (NARS) in developing countries can adopt this workflow to fast-track molecular marker-based genotyping for crop improvement.

11.
Am J Clin Nutr ; 115(3): 619-624, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34893796

RESUMEN

FoodData Central (FDC) is the center of the USDA-based food-composition information web. It is an integrated data system that presently provides-in 1 place-5 distinct types of data containing information on food and nutrient profiles. Each data type has a unique purpose. Two of the data types-Foundation Foods (FF) and Experimental Foods (EF)-represent "a bridge to the future" in food and nutrient composition. They provide data and metadata that have never previously been available from a database. The other 3 data types are well established and familiar to many users: Standard Reference (SR) Legacy, Food and Nutrient Database for Dietary Studies (FNDDS), and Global Branded Foods Products Database (GBFPD). After >100 y of maintaining food-composition data within the USDA, it was clear that change was needed to respond to the rapid increase in the number and variety of foods in the food supply, evolution of analytical approaches, and new agricultural practices and products. FDC is USDA's answer to the challenge of providing reliable, web-based, transparent, and easily accessible information about the nutrients and other components of foods to meet the increasingly diverse needs of many audiences, including public health professionals, agricultural and environmental researchers, policy makers, nutrition professionals, health care providers, product developers, and the public at large.


Asunto(s)
Dieta , Alimentos , Bases de Datos Factuales , Análisis de los Alimentos , Humanos , Estados Unidos , United States Department of Agriculture
12.
Animals (Basel) ; 11(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34438616

RESUMEN

BACKGROUND: Farm animals (FAs) are frequently used in biomedical research. Recommendations for the purchase, housing and health monitoring of these animals (sheep, goats, cattle and pigs) are still missing, and many institutes have developed their own strategies and protocols to face the challenges associated with the use of farm animals. This may influence the comparability of research results and increase data variances, thus increasing animal use that contradicts the obligation to apply the 3Rs principle of reduction, refinement and replacement required in Directive 2010/63 EU and the German animal protection law. METHODS: A survey was conducted to define the current state of the art in research institutes working with pigs, and large and small ruminants. RESULTS: The results of the survey clearly show that there are no uniform procedures regarding the purchase, housing and hygiene management of farm animals contrary to small laboratory animals. The facilities make purpose-bound decisions according to their own needs and individual work instructions and implement their own useful protocols to improve and maintain the health of the animals. CONCLUSION: This survey was the first step to filling the gaps and identifying the status quo and practical applied measures regarding the purchase and hygiene monitoring of FAs in order to improve animal welfare and scientific validity.

13.
Saudi J Biol Sci ; 28(7): 3799-3805, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34220234

RESUMEN

Predation is one of the significant biotic mortality factors reducing the insect pest population as functional response and the numerical response of the predator are the key factor regulating the population dynamics of predator prey species. This study is aimed to evaluate the functional response of all the developmental stages of Scymnus coccivora Ayyar (Coleoptera: Coccinellidae) against the different densities of cotton mealybug, Phenacoccus solenopsis (Tinsley) (Hemiptera: Pseudococcidae) and the numerical response of female predator. Experiments were carried out in controlled environment laboratory conditions at 25 ± 1 °C temperature, 60 ± 5% relative humidity and photoperiod of 16 h. Number of eggs consumed, number of eggs laid and the Efficiency of Conversion of Ingested food (ECI) were recorded daily. Results from the study revealed that all the developmental stages of S. coccivora exhibited a Type II response. Different parameters such as attack rate (a'), handling time (Th) and the maximum rate of predation were estimated using Roger's random attack equation and Holling Disc equation in which Rogers random attack equation was found best fit. Female has shown the highest attack rate (a') followed by IVth instar grub, male, IIIrd, IInd and Ist instar grub. With low handling time, IVth instar grub has shown maximum predation rate of 76.40 per day followed by female (75.86), male (58.79), IIIrd (22.84), IInd (19.65) and Ist instar grub (15.39). The numerical response increase was curvilinearly related to different prey densities with the highest number of eggs (11.8 ± 3.44) produced at highest prey density (160). The Efficiency of Conversion of Ingested food (ECI) was highest (64.49 ± 8.03) at prey density of 10. Understanding the factors that lead to variation in functional response of predator in natural population will advance our understanding of the effects of predation on individual and the effectiveness of coccinellid predators as biocontrol agent against cotton mealybug.

14.
F1000Res ; 10: 324, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36873457

RESUMEN

Artificial Intelligence (AI) is increasingly used within plant science, yet it is far from being routinely and effectively implemented in this domain. Particularly relevant to the development of novel food and agricultural technologies is the development of validated, meaningful and usable ways to integrate, compare and visualise large, multi-dimensional datasets from different sources and scientific approaches. After a brief summary of the reasons for the interest in data science and AI within plant science, the paper identifies and discusses eight key challenges in data management that must be addressed to further unlock the potential of AI in crop and agronomic research, and particularly the application of Machine Learning (AI) which holds much promise for this domain.

15.
Field Crops Res ; 249: 107742, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32255898

RESUMEN

The effects of climate change together with the projected future demand represents a huge challenge for wheat production systems worldwide. Wheat breeding can contribute to global food security through the creation of genotypes exhibiting stress tolerance and higher yield potential. The objectives of our study were to (i) estimate the annual grain yield (GY) genetic gain of High Rainfall Wheat Yield Trials (HRWYT) grown from 2007 (15th HRWYT) to 2016 (24th HRWYT) across international environments, and (ii) determine the changes in physiological traits associated with GY genetic improvement. The GY genetic gains were estimated as genetic progress per se (GYP) and in terms of local checks (GYLC). In total, 239 international locations were classified into two groups: high- and low-rainfall environments based on climate variables and trial management practices. In the high-rainfall environment, the annual genetic gains for GYP and GYLC were 3.8 and 1.17 % (160 and 65.1 kg ha-1 yr-1), respectively. In the low-rainfall environment, the genetic gains were 0.93 and 0.73 % (40 and 33.1 kg ha-1 yr-1), for GYP and GYLC respectively. The GY of the lines included in each nursery showed a significant phenotypic correlation between high- and low-rainfall environments in all the examined years and several of the five best performing lines were common in both environments. The GY progress was mainly associated with increased grain weight (R2 = 0.35 p < 0.001), days to maturity (R2 = 0.20, p < 0.001) and grain filling period (R2 = 0.06, p < 0.05). These results indicate continuous GY genetic progress and yield stability in the HRWYT germplasm developed and distributed by CIMMYT.

16.
Virus Res ; 280: 197898, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32061619

RESUMEN

The NC229 research consortium was created in 1999 in response to the emergence of porcine reproductive and respiratory syndrome virus (PRRSV), a viral agent responsible for devastating economic losses to the swine industry. The project follows the traditional "consortium" approach for Multistate Agricultural Research driven through the US State Agricultural Experiment Stations (SAES), wherein stakeholder-driven needs to combat swine infectious diseases are identified and scientific solutions pursued by combining funds from federal, state, commodity groups, and the animal health industry. The NC229 consortium was the main driving force in successfully competing for a USDA multi-station Coordinated Agricultural Project (PRRS CAP-I) in 2004-2008, immediately followed by a renewal for 2010-2014 (PRRS CAP-II)-, resulting in an overall record achievement of almost $10 million dollars. The CAP funding was not only useful for quality research, extension, and education in PRRS and related diseases, but also instrumental in enabling the group to leverage swine industry funding of more than $34 million dollars, distributed between creative research and extension on PRRS during the last 20 years. The North American/International PRRS Symposium, now recognized by the community as a highly effective platform for the exchange of basic research findings and fundamental translational technology, is directly derived from the NC229 consortium. Other significant offshoots from NC229 include the PHGC (PRRS Host Genomic Consortium), a platform for discoveries on the role of host genetics during PRRSV infection, since 2007. Since 2009, the NC229 consortium has expanded its collective research interests beyond PRRSV to include nine other emerging viral diseases of swine. In the current project (2019-2024), African Swine Fever Virus (ASFV) retains a central focus, with the goal of harnessing the group's expertise in promoting preparedness for the global control of ASFV.


Asunto(s)
Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades Transmisibles Emergentes/virología , Investigación/organización & administración , Virosis/veterinaria , Animales , Congresos como Asunto , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Investigación/economía , Participación de los Interesados , Porcinos , Estados Unidos , Virosis/prevención & control
17.
J Bacteriol ; 202(4)2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31740494

RESUMEN

Flagella power bacterial movement through liquids and over surfaces to access or avoid certain environmental conditions, ultimately increasing a cell's probability of survival and reproduction. In some cases, flagella and chemotaxis are key virulence factors enabling pathogens to gain entry and attach to suitable host tissues. However, flagella are not always beneficial; both plant and animal immune systems have evolved receptors to sense the proteins that make up flagellar filaments as signatures of bacterial infection. Microbes poorly adapted to avoid or counteract these immune functions are unlikely to be successful in host environments, and this selective pressure has driven the evolution of diverse and often redundant pathogen compensatory mechanisms. We tested the role of AlgU, the Pseudomonas extracytoplasmic function sigma factor σE/σ22 ortholog, in regulating flagellar expression in the context of Pseudomonas syringae-plant interactions. We found that AlgU is necessary for downregulating bacterial flagellin expression in planta and that this results in a corresponding reduction in plant immune elicitation. This AlgU-dependent regulation of flagellin gene expression is beneficial to bacterial growth in the course of plant infection, and eliminating the plant's ability to detect flagellin makes this AlgU-dependent function irrelevant for bacteria growing in the apoplast. Together, these results add support to an emerging model in which P. syringae AlgU functions at a key control point that serves to optimize the expression of bacterial functions during host interactions, including minimizing the expression of immune elicitors and concomitantly upregulating beneficial virulence functions.IMPORTANCE Foliar plant pathogens, like Pseudomonas syringae, adjust their physiology and behavior to facilitate host colonization and disease, but the full extent of these adaptations is not known. Plant immune systems are triggered by bacterial molecules, such as the proteins that make up flagellar filaments. In this study, we found that during plant infection, AlgU, a gene expression regulator that is responsive to external stimuli, downregulates expression of fliC, which encodes the flagellin protein, a strong elicitor of plant immune systems. This change in gene expression and resultant change in behavior correlate with reduced plant immune activation and improved P. syringae plant colonization. The results of this study demonstrate the proximate and ultimate causes of flagellar regulation in a plant-pathogen interaction.


Asunto(s)
Proteínas Bacterianas/fisiología , Flagelina/genética , Regulación Bacteriana de la Expresión Génica , Inmunidad de la Planta , Pseudomonas syringae/fisiología , Factor sigma/fisiología , Regulación hacia Abajo
18.
Vet World ; 12(7): 1070-1077, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31528035

RESUMEN

AIM: The National Institute of Veterinary Epidemiology and Disease Informatics is an animal science research institute under the aegis of the Indian Council of Agricultural Research. The intellectual property management system (IPMS) of the institute oversees technology creation, protection, and transfer/commercialization. This study reviews the effectiveness of the IPMS using traditional strengths, weaknesses, opportunities, and threats (SWOT) evaluation. MATERIALS AND METHODS: A comprehensive repository was developed to compile the SWOT pertaining to the IPMS based on relevant document reviews and the inputs of experts and stakeholders. The repository was shared among scientists of the institute for rating. The rating process revealed the top ten key SWOT associated with the structure and operation of the IPMS. The weighted SWOT matrix technique was used to identify the best strategies to improve and develop the IPMS further. This included strategies derived from the best combinations of key strengths and opportunities (S-O strategies), key weaknesses and opportunities (W-O strategies), key strengths and threats (S-T strategies), and key weaknesses and threats (W-T strategies). RESULTS: The top-ranked strengths included "possession of patented technology" and "state-of-the-art biosafety laboratory facilities," while "lack of in-house faculty with legal expertise in intellectual property rights (IPR)" and "lack of technology incubation facilities" were the key weaknesses. The key opportunities included "external funding for research projects" and "market demand for onsite diagnostic tools." The major threats were "lack of market for veterinary diagnostics" and "broad-based patents on research tools and technologies." CONCLUSION: The strengths of the system, such as a state-of-the-art biosafety laboratory and technology-marketing collaboration with Agrinnovate India Ltd., could be employed effectively to gain from the opportunities tendered by the market demand for on-site disease diagnostic tools (S-O strategies). The limitation arising from a dearth of technical staff could be overcome by technological backstopping through international linkages in the area of disease monitoring and surveillance. Funding from externally supported projects could also be utilized for recruitment of personnel (W-O strategies). Limitations arising from the combination of inadequate in-house IPR expertise and the threat arising from broad-based patents on research tools warrant vigilance (W-T strategies).

19.
Sci Total Environ ; 682: 106-117, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31108265

RESUMEN

Systematic review has generally been accepted as an effective, more complete, repeatable, and less biased type literature review that can successfully lead to evidence-based conclusions. This study attempts to develop a framework for systematic review with guidelines on how to conduct an effective systematic review for agricultural research. Systematic reviews require more time and effort but they can be used to conduct a comprehensive literature review, identifying potentially eligible articles on primary agricultural research and answering certain focused questions. A systematic review is also conducted as an example to examine whether systematic reviews are used in agricultural sciences. It was found that in the last two decades about a third (N = 29 out of 89 or 32.5%) of the eligible studies, classified as reviews related to agricultural research, are available as free full-text from publisher, while only eighteen of them were finally eligible to be included in this systematic review.

20.
Outlook Agric ; 48(4): 309-315, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33281227

RESUMEN

Agriculture in Africa is expected to meet the dual objectives of providing food and helping people to escape poverty. African agriculture is dominated by smallholdings and donors generally target their agricultural support at the smallholder sector. The expectation is that if the gap between actual and potential yields can be closed, smallholders will grow sufficient crops to feed their families, with a surplus to sell, thus meeting food security needs and bringing in an income to move them out of poverty. In practice, this is often not possible. While technologies already exist that can raise smallholder farmers' yields 3 or 4 times, even under rainfed conditions, the small size of land available to them limits how much can be grown and the per capita income from agriculture is insufficient to allow people to move above the current World Bank-defined poverty line of US$1.90 per day. We link this finding with farmer typologies to further explain that there are large differences between individual farming households themselves in terms of their investment incentives and capability to benefit from field-level technologies that are aimed at increasing farm productivity. We argue for more differentiated policies for agricultural development in Africa and suggest that policymakers should be much more aware of the heterogeneity of farms and target interventions accordingly. It is important to understand where and for whom agriculture will have the main purpose of ensuring food and nutritional security and where and for whom there is the potential for significant increases in incomes and a contribution to wider economic growth. Let us recognize the distinctiveness of these targets and underlying target groups and work towards solutions that address the underlying needs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA