Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Acta Pharm Sin B ; 12(2): 600-620, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34401226

RESUMEN

The use of small interfering RNAs (siRNAs) has been under investigation for the treatment of several unmet medical needs, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS) wherein siRNA may be implemented to modify the expression of pro-inflammatory cytokines and chemokines at the mRNA level. The properties such as clear anatomy, accessibility, and relatively low enzyme activity make the lung a good target for local siRNA therapy. However, the translation of siRNA is restricted by the inefficient delivery of siRNA therapeutics to the target cells due to the properties of naked siRNA. Thus, this review will focus on the various delivery systems that can be used and the different barriers that need to be surmounted for the development of stable inhalable siRNA formulations for human use before siRNA therapeutics for ALI/ARDS become available in the clinic.

2.
JHEP Rep ; 3(5): 100345, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34568801

RESUMEN

BACKGROUND & AIMS: Polycystic liver disease (PLD) is characterised by increased autophagy and reduced miRNA levels in cholangiocytes. Given that autophagy has been implicated in miRNA regulation, we tested the hypothesis that increased autophagy accounts for miRNA reduction in PLD cholangiocytes (PLDCs) and accelerated hepatic cystogenesis. METHODS: We assessed miRNA levels in cultured normal human cholangiocytes (NHCs), PLDCs, and isolated PLDC autophagosomes by miRNA-sequencing (miRNA-seq), and miRNA targets by mRNA-seq. Levels of miR-345 and miR-345-targeted proteins in livers of animals and humans with PLD, in NHCs and PLDCs, and in PLDCs transfected with pre-miR-345 were assessed by in situ hybridisation (ISH), quantitative PCR, western blotting, and fluorescence confocal microscopy. We also assessed cell proliferation and cyst growth in vitro, and hepatic cystogenesis in vivo. RESULTS: In total, 81% of miRNAs were decreased in PLDCs, with levels of 10 miRNAs reduced by more than 10 times; miR-345 was the most-reduced miRNA. In silico analysis and luciferase reporter assays showed that miR-345 targets included cell-cycle and cell-proliferation-related genes [i.e. cell division cycle 25A (CDC25A), cyclin-dependent kinase 6 (CDK6), E2F2, and proliferating cell nuclear antigen (PCNA)]; levels of 4 studied miR-345 targets were increased in PLDCs at both the mRNA and protein levels. Transfection of PLDCs with pre-miR-345 increased miR-345 and decreased the expression of miR-345-targeted proteins, cell proliferation, and cyst growth in vitro. MiR-345 accumulated in autophagosomes in PLDCs but not NHCs. Inhibition of autophagy increased miR-345 levels, decreased the expression of miR-345-targeted proteins, and reduced hepatic cystogenesis in vitro and in vivo. CONCLUSION: Autophagy-mediated reduction of miR-345 in PLDCs (i.e. miRNAutophagy) accelerates hepatic cystogenesis. Inhibition of autophagy restores miR-345 levels, decreases cyst growth, and is beneficial for PLD. LAY SUMMARY: Polycystic liver disease (PLD) is an incurable genetic disorder characterised by the progressive growth of hepatic cysts. We found that hepatic cystogenesis is increased when the levels of miR-345 in PLD cholangiocytes (PLDCs) are reduced by autophagy. Restoration of miR-345 in PLDCs via inhibition of autophagy decreases hepatic cystogenesis and thus, is beneficial for PLD.

3.
Biomol Detect Quantif ; 17: 100089, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31194192

RESUMEN

Small extracellular vesicles (EVs) are 50-200 nm sized mediators in intercellular communication that reflect both physiological and pathophysiological changes of their parental cells. Thus, EVs hold great potential for biomarker detection. However, reliable purification methods for the downstream screening of the microRNA (miRNA) cargo carried within urinary EVs by small RNA sequencing have yet to be established. To address this knowledge gap, RNA extracted from human urinary EVs obtained by five different urinary EV purification methods (spin column chromatography, immunoaffinity, membrane affinity, precipitation and ultracentrifugation combined with density gradient) was analyzed by small RNA sequencing. Urinary EVs were further characterized by nanoparticle tracking analysis, Western blot analysis and transmission electron microscopy. Comprehensive EV characterization established significant method-dependent differences in size and concentration as well as variances in protein composition of isolated vesicles. Even though all purification methods captured enough total RNA to allow small RNA sequencing, method-dependent differences were also observed with respect to library sizes, mapping distributions, number of miRNA reads and diversity of transcripts. Whereas EVs obtained by immunoaffinity yielded the purest subset of small EVs, highly comparable with results attained by ultracentrifugation combined with density gradient, precipitation and membrane affinity, sample purification by spin column chromatography indicated a tendency to isolate different subtypes of small EVs, which might also carry a distinct subset of miRNAs. Based on our results, different EV purification methods seem to preferentially isolate different subtypes of EVs with varying efficiencies. As a consequence, sequencing experiments and resulting miRNA profiles were also affected. Hence, the selection of a specific EV isolation method has to satisfy the respective research question and should be well considered. In strict adherence with the MISEV (minimal information for studies of extracellular vesicles) guidelines, the importance of a combined evaluation of biophysical and proteomic EV characteristics alongside transcriptomic results was clearly demonstrated in this present study.

4.
Toxicol Rep ; 6: 186-192, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30899675

RESUMEN

Small non-coding RNAs control normal development and differentiation in the embryo. These regulatory molecules play a key role in the development of human diseases and are used often today for researching new treatments for different pathologies. In this study, CaCo2 colorectal adenocarcinoma cells were initially epigenetically reprogrammed and transformed into CD4+ cells with nano-sized complexes of amphiphilic poly-(N-vinylpyrrolidone) (PVP) with miRNA-152 and piRNA-30074. The transformation of cells was confirmed by morphological and genetic changes in the dynamic of reprogramming. CD4+ lymphocytes marker was detected using immunofluorescence. Amphiphilic poly-(N-vinylpyrrolidone)/small non-coding RNAs complexes were investigated for transfection efficiency and duration of transfection of CaCo2 colorectal adenocarcinoma cells using fluorescence.

5.
Int J Mol Sci ; 17(1)2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26761000

RESUMEN

MicroRNAs are 18-22 nucleotides long, non-coding RNAs that bind transcripts with complementary sequences leading to either mRNA degradation or translational suppression. However, the inherent differences in preferred mode of miRNA regulation among cells of different origin have not been examined. In our previous transcriptome profiling studies, we observed that post-transcriptional regulation can differ substantially depending on the cell in context. Here we examined mechanistic differences in the regulation of a let-7a targeted (wild type) or resistant (mutant) engineered renilla transcript across various mammalian cell lines of diverse origin. Dual luciferase assays show that compared to mutant (mut), the reporter gene containing wild type (wt) let-7a binding sites was efficiently suppressed upon transfection in various cell lines. Importantly, the strength of miRNA regulation varied across the cell lines. Total RNA analysis demonstrates that wt renilla mRNA was expressed to similar or higher levels compared to mut suggesting that translation repression is a predominant mode of miRNA regulation. Nonetheless, transcript degradation was observed in some cell lines. Ago-2 immunoprecipitation show that miRNA repressed renilla mRNA are associated with functional mi-RISC (miRNA-RNA induced silencing complex). Given the immense potential of miRNA as a therapeutic option, these findings highlight the necessity to thoroughly examine the mode of mRNA regulation in order to achieve the beneficial effects in targeting cells.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , ARN Mensajero/genética , Complejo Silenciador Inducido por ARN/genética , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Genes Reporteros , Células HeLa , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Mutación , Células 3T3 NIH , Biosíntesis de Proteínas , Transcripción Genética , Transfección
6.
Acta Pharm Sin B ; 5(2): 145-50, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26579440

RESUMEN

microRNAs (miRNAs or miRs) are small non-coding RNAs that are involved in post-transcriptional regulation of their target genes in a sequence-specific manner. Emerging evidence demonstrates that miRNAs are critical regulators of lipid synthesis, fatty acid oxidation and lipoprotein formation and secretion. Dysregulation of miRNAs disrupts gene regulatory network, leading to metabolic syndrome and its related diseases. In this review, we introduced epigenetic and transcriptional regulation of miRNAs expression. We emphasized on several representative miRNAs that are functionally involved into lipid metabolism, including miR-33/33(⁎), miR122, miR27a/b, miR378/378(⁎), miR-34a and miR-21. Understanding the function of miRNAs in lipid homeostasis may provide potential therapeutic strategies for fatty liver disease.

7.
RNA Biol ; 12(7): 690-700, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25970317

RESUMEN

Treatment of leukemia cells with 1,25-dihydroxyvitamin D3 may overcome their differentiation block and lead to the transition from myeloblasts to monocytes. To identify microRNA-mRNA networks relevant for myeloid differentiation, we profiled the expression of mRNAs and microRNAs associated to the low- and high-density ribosomal fractions in leukemic cells and in their differentiated monocytic counterpart. Intersection between mRNAs shifted across the fractions after treatment with putative target genes of modulated microRNAs showed a series of molecular networks relevant for the monocyte cell fate determination, as for example the post-transcriptional regulation of the Polo-like kinase 1 (PLK1) by miR-22-3p and let-7e-5p.


Asunto(s)
Diferenciación Celular , Redes Reguladoras de Genes , Células Precursoras de Granulocitos/citología , Monocitos/citología , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Proteínas de Ciclo Celular/metabolismo , Colecalciferol/metabolismo , Células Precursoras de Granulocitos/metabolismo , Células HL-60 , Humanos , Leucemia/metabolismo , MicroARNs/metabolismo , Monocitos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Quinasa Tipo Polo 1
8.
RNA Biol ; 12(2): 123-35, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25668122

RESUMEN

Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression. We demonstrate that RRE binds to TAR-RNA Binding Protein (TRBP), an essential component of the RNA Induced Silencing Complex (RISC). The binding of TAR and RRE to TRBP displaces small interfering (si)RNAs from binding to TRBP. Several stem-deleted RRE mutants lost their ability to suppress RNAi activity, which correlated with a reduced ability to compete with siRNA-TRBP binding. A lentiviral vector expressing TAR and RRE restricted RNAi, but RNAi was restored when Rev or GagPol were coexpressed. Adenoviruses are restricted by RNAi and encode their own suppressors of RNAi, the Virus-Associated (VA) RNA elements. RRE enhanced the replication of wild-type and VA-deficient adenovirus. Our work describes RRE as a novel suppressor of RNAi that acts by competing with siRNAs rather than by disrupting the RISC. This function is masked in lentiviral vectors co-expressed with viral proteins and thus will not affect their use in gene therapy. The potent RNAi suppressive effects of RRE identified in this study could be used to enhance the expression of RNAi restricted viruses used in oncolysis such as adenoviruses.


Asunto(s)
Genes env , Duplicado del Terminal Largo de VIH , VIH-1/genética , Interferencia de ARN , Proteínas de Unión al ARN/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Unión Competitiva , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , VIH-1/metabolismo , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Células Jurkat , Lentivirus/genética , Lentivirus/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Conformación de Ácido Nucleico , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen pol del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen pol del Virus de la Inmunodeficiencia Humana/metabolismo
9.
Acta Pharmaceutica Sinica B ; (6): 145-150, 2015.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-329681

RESUMEN

microRNAs (miRNAs or miRs) are small non-coding RNAs that are involved in post-transcriptional regulation of their target genes in a sequence-specific manner. Emerging evidence demonstrates that miRNAs are critical regulators of lipid synthesis, fatty acid oxidation and lipoprotein formation and secretion. Dysregulation of miRNAs disrupts gene regulatory network, leading to metabolic syndrome and its related diseases. In this review, we introduced epigenetic and transcriptional regulation of miRNAs expression. We emphasized on several representative miRNAs that are functionally involved into lipid metabolism, including miR-33/33(⁎), miR122, miR27a/b, miR378/378(⁎), miR-34a and miR-21. Understanding the function of miRNAs in lipid homeostasis may provide potential therapeutic strategies for fatty liver disease.

10.
Cancer Biol Ther ; 15(11): 1444-55, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25482951

RESUMEN

microRNAs (miRNAs) are non coding RNAs with different biological functions and pathological implications. Given their role as post-transcriptional gene expression regulators, they are involved in several important physiological processes like development, cell differentiation and cell signaling. miRNAs act as modulators of gene expression programs in different diseases, particularly in cancer, where they act through the repression of genes which are critical for carcinogenesis. The expression level of mature miRNAs is the result of a fine mechanism of biogenesis, carried out by different enzymatic complexes that exert their function at transcriptional and post-transcriptional levels. In this review, we will focus our discussion on the alterations in the miRNA biogenesis machinery, and its impact on the establishment and development of cancer programs.


Asunto(s)
MicroARNs/genética , Neoplasias/genética , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Carioferinas/genética , Carioferinas/metabolismo , MicroARNs/metabolismo , Neoplasias/metabolismo , Neoplasias/mortalidad , Neoplasias/patología , Pronóstico , Procesamiento Postranscripcional del ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
11.
Mol Metab ; 2(2): 74-85, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-24199146

RESUMEN

MicroRNAs (miRNAs) have recently emerged as key regulators of metabolism. However, their potential role in the central regulation of whole-body energy homeostasis is still unknown. In this study we show that the expression of Dicer, an essential endoribonuclease for miRNA maturation, is modulated by nutrient availability and excess in the hypothalamus. Conditional deletion of Dicer in POMC-expressing cells resulted in obesity, characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism and alterations in the pituitary-adrenal axis. The development of the obese phenotype was paralleled by a POMC neuron degenerative process that started around 3 weeks of age. Hypothalamic transcriptomic analysis in presymptomatic POMCDicerKO mice revealed the downregulation of genes implicated in biological pathways associated with classical neurodegenerative disorders, such as MAPK signaling, ubiquitin-proteosome system, autophagy and ribosome biosynthesis. Collectively, our results highlight a key role for miRNAs in POMC neuron survival and the consequent development of neurodegenerative obesity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA