RESUMEN
The COVID-19 pandemic due to the SARS-CoV-2 coronavirus has directly impacted the public health and economy worldwide. To overcome this problem, countries have adopted different policies and non-pharmaceutical interventions for controlling the spread of the virus. This paper proposes the COVID-ABS, a new SEIR (Susceptible-Exposed-Infected-Recovered) agent-based model that aims to simulate the pandemic dynamics using a society of agents emulating people, business and government. Seven different scenarios of social distancing interventions were analyzed, with varying epidemiological and economic effects: (1) do nothing, (2) lockdown, (3) conditional lockdown, (4) vertical isolation, (5) partial isolation, (6) use of face masks, and (7) use of face masks together with 50% of adhesion to social isolation. In the impossibility of implementing scenarios with lockdown, which present the lowest number of deaths and highest impact on the economy, scenarios combining the use of face masks and partial isolation can be the more realistic for implementation in terms of social cooperation. The COVID-ABS model was implemented in Python programming language, with source code publicly available. The model can be easily extended to other societies by changing the input parameters, as well as allowing the creation of a multitude of other scenarios. Therefore, it is a useful tool to assist politicians and health authorities to plan their actions against the COVID-19 epidemic.
RESUMEN
Low vaccine-effectiveness has been recognised as a key factor undermining efforts to improve strategies and uptake of seasonal influenza vaccination. Aiming to prevent disease transmission, vaccination may influence the perceived risk-of-infection and, therefore, alter the individual-level behavioural responses, such as the avoidance of contact with infectious cases. We asked how the avoidance behaviour of vaccinated individuals changes disease dynamics, and specifically the epidemic size, in the context of imperfect vaccination. For this purpose, we developed an agent-based simulation model, and parameterised it with published estimates and relevant databases for population demographics and agent characteristics. Encapsulating an age-stratified structure, we evaluated the per-contact risk-of-infection and estimated the epidemic size. Our results show that vaccination could lead to a larger epidemic size if the level of avoidance behaviour in vaccinated individuals reduces below that of susceptible individuals. Furthermore, the risk-of-infection in vaccinated individuals, which follows the pattern of age-dependent frailty index of the population, increases for older age groups, and may reach, or even exceed, the risk-of-infection in susceptible individuals. Our findings indicate that low engagement in avoidance behaviour can potentially offset the benefits of vaccination even for vaccines with high effectiveness. While highlighting the protective effects of vaccination, seasonal influenza immunisation programmes should enhance strategies to promote avoidance behaviour despite being vaccinated.
Asunto(s)
Epidemias/prevención & control , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/epidemiología , Distancia Psicológica , Vacunación/estadística & datos numéricos , Humanos , Gripe Humana/prevención & control , Gripe Humana/psicología , Modelos Teóricos , Factores de Riesgo , Estaciones del AñoRESUMEN
The objective of this study was to develop an agent based modeling (ABM) framework to simulate the behavior of patients who leave a public hospital emergency department (ED) without being seen (LWBS). In doing so, the study complements computer modeling and cellular automata (CA) techniques to simulate the behavior of patients in an ED. After verifying and validating the model by comparing it with data from a real case study, the significance of four preventive policies including increasing number of triage nurses, fast-track treatment, increasing the waiting room capacity and reducing treatment time were investigated by utilizing ordinary least squares regression. After applying the preventing policies in ED, an average of 42.14% reduction in the number of patients who leave without being seen and 6.05% reduction in the average length of stay (LOS) of patients was reported. This study is the first to apply CA in an ED simulation. Comparing the average LOS before and after applying CA with actual times from emergency department information system showed an 11% improvement. The simulation results indicated that the most effective approach to reduce the rate of LWBS is applying fast-track treatment. The ABM approach represents a flexible tool that can be constructed to reflect any given environment. It is also a support system for decision-makers to assess the relative impact of control strategies.
Asunto(s)
Humanos , Conducta , Servicio de Urgencia en Hospital/organización & administración , Pacientes Desistentes del Tratamiento/estadística & datos numéricos , Triaje/estadística & datos numéricos , Brasil , Simulación por Computador , Aglomeración , Toma de Decisiones , Técnicas de Apoyo para la Decisión , Servicio de Urgencia en Hospital/estadística & datos numéricos , Hospitales Públicos , Tiempo de Internación , Modelos Teóricos , Pacientes Desistentes del Tratamiento/psicología , Modelación Específica para el Paciente , Entrenamiento Simulado , Listas de EsperaRESUMEN
This study presents an agent-based simulation modeling in an emergency department. In a traditional approach, a supervisor (or a manager) allocates the resources (receptionist, nurses, doctors, etc.) to different sections based on personal experience or by using decision-support tools. In this study, each staff agent took part in the process of allocating resources based on their observation in their respective sections, which gave the system the advantage of utilizing all the available human resources during the workday by being allocated to a different section. In this simulation, unlike previous studies, all staff agents took part in the decision-making process to re-allocate the resources in the emergency department. The simulation modeled the behavior of patients, receptionists, triage nurses, emergency room nurses and doctors. Patients were able to decide whether to stay in the system or leave the department at any stage of treatment. In order to evaluate the performance of this approach, 6 different scenarios were introduced. In each scenario, various key performance indicators were investigated before and after applying the group decision-making. The outputs of each simulation were number of deaths, number of patients who leave the emergency department without being attended, length of stay, waiting time and total number of discharged patients from the emergency department. Applying the self-organizing approach in the simulation showed an average of 12.7 and 14.4% decrease in total waiting time and number of patients who left without being seen, respectively. The results showed an average increase of 11.5% in total number of discharged patients from emergency department.