Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
J Environ Sci (China) ; 147: 538-549, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003069

RESUMEN

The multi-soil-layering (MSL) systems is an emerging solution for environmentally-friendly and cost-effective treatment of decentralized rural domestic wastewater. However, the role of the seemingly simple permeable layer has been overlooked, potentially holding the breakthroughs or directions to addressing suboptimal nitrogen removal performance in MSL systems. In this paper, the mechanism among diverse substrates (zeolite, green zeolite and biological ceramsite) coupled microorganisms in different systems (activated bacterial powder and activated sludge) for rural domestic wastewater purification was investigated. The removal efficiencies performed by zeolite coupled with microorganisms within 3 days were 93.8% for COD, 97.1% for TP, and 98.8% for NH4+-N. Notably, activated sludge showed better nitrification and comprehensive performance than specialized nitrifying bacteria powder. Zeolite attained an impressive 89.4% NH4+-N desorption efficiency, with a substantive fraction of NH4+-N manifesting as exchanged ammonium. High-throughput 16S rRNA gene sequencing revealed that aerobic and parthenogenetic anaerobic bacteria dominated the reactor, with anaerobic bacteria conspicuously absent. And the heterotrophic nitrification-aerobic denitrification (HN-AD) process was significant, with the presence of denitrifying phosphorus-accumulating organisms (DPAOs) for simultaneous nitrogen and phosphorus removal. This study not only raises awareness about the importance of the permeable layer and enhances comprehension of the HN-AD mechanism in MSL systems, but also provides valuable insights for optimizing MSL system construction, operation, and rural domestic wastewater treatment.


Asunto(s)
Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Nitrificación , Nitrógeno/metabolismo , Suelo/química , Desnitrificación , Aguas Residuales/química , Aguas del Alcantarillado/microbiología , Microbiología del Suelo , Zeolitas/química , Fósforo/metabolismo , Reactores Biológicos/microbiología , Bacterias/metabolismo
2.
Biotechnol Lett ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261356

RESUMEN

Inoculating heterotrophic nitrification-aerobic denitrification bacteria (HN-AD) to enhance membrane bioreactor (MBR) efficiency may result in the loss of functional bacteria. Therefore, this study compares the application results of enhancing MBR with a self-designed biological amplifier coupled with HN-AD against the performance of conventional MBR. After enhancement, the MBR achieved a removal efficiency of 96.7% for NH4+-N (100 mg/L) and 96.4% for COD (400 mg/L) in synthetic wastewater. There was a 33% increase in TN (100 mg/L) removal efficiency. The dominant bacteria in the MBR were Alcaligenes (48.4%) and Thauera (15.2%). Additionally, the abundance of denitrification genes (nirK, norB, nosZ) increased in the enhanced MBR, contributing to improved TN removal efficiency. The use of a biological amplifier effectively solved the problem of HN-AD loss in sewage treatment.

3.
Bioresour Technol ; 408: 131228, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39117239

RESUMEN

A novel A. pittii J08 with heterotrophic nitrification and aerobic denitrification (HN-AD) isolated from pond sediments could rapidly degrade inorganic nitrogen (N) and total nitrogen (TN-N) with ammonium (NH4+-N) preference. N degradation rate of NH4+-N, nitrite (NO2--N) and nitrate (NO3--N) were 3.9 mgL-1h-1, 3.0 mgL-1h-1 and 2.7 mgL-1h-1, respectively. In addition, strain J08 could effectively utilize most of detected low-molecular-weight carbon (LMWC) sources to degrade inorganic N with a wide adaptability to various culture conditions. Whole genome sequencing (WGS) analysis revealed that assembled genome of stain J08 possessed the crucial genes involved in dissimilatory/assimilatory NO3--N reduction and NH4+-N assimilation. These results indicated that strain J08 could be applied to wastewater treatment in aquaculture.


Asunto(s)
Acinetobacter , Nitrógeno , Nitrógeno/metabolismo , Acinetobacter/metabolismo , Acinetobacter/genética , Genoma Bacteriano , Desnitrificación , Compuestos de Amonio/metabolismo , Genómica/métodos , Nitratos/metabolismo , Biodegradación Ambiental , Nitrificación , Nitritos/metabolismo , Filogenia , Aguas Residuales/microbiología , Secuenciación Completa del Genoma
4.
Bioresour Technol ; 410: 131257, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128639

RESUMEN

Fungi capable of simultaneous nitrogen and phosphorus removal from wastewater is rarely found. Here, a novel fungal strain (SNDM1) performing heterotrophic nitrification, aerobic denitrification, and phosphate removal was isolated and identified as Mucor circinelloides. The favorable nutrient removal conditions by the strain using glucose were C/N ratios of 25-30, salinities of 0 %-3 %, and pH of 7.5. Strain SNDM1 achieved ammonium, nitrite, nitrate, and phosphate removal rates of 5.23, 10.08, 4.88, and 0.97 mg/L/h. Nitrogen balance indicated that gaseous (18.60 %-24.55 %) and intracellular nitrogen (43.76 %-70.63 %) were primary fate of initial nitrogen. Enzyme activity revealed that ammonium removal occurred through heterotrophic nitrification and aerobic denitrification. Removed phosphorus was mainly transformed into cell membranes (56 %-64 %) and extracellular polymeric substances (20 %-26 %). Orthophosphate was the major intracellular phosphorus species, while polyphosphate and pyrophosphate existed extracellularly. These findings highlight the potential of this fungal strain for bioremediating polluted wastewater.


Asunto(s)
Biodegradación Ambiental , Mucor , Nitrógeno , Fósforo , Mucor/metabolismo , Fósforo/metabolismo , Nitrógeno/metabolismo , Aerobiosis , Aguas Residuales/microbiología , Aguas Residuales/química , Desnitrificación , Fosfatos/metabolismo , Filogenia , Purificación del Agua/métodos
5.
Sci Total Environ ; 951: 175457, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39137850

RESUMEN

The efficient nitrogen removal from micro-polluted source water is an international challenge to be solved urgently. However, the inner denitrification mechanism of native aerobic denitrifying bacterial communities in response to carbon scarcity remains relatively unclear. Here, the bacterial community XT6, screened from an oligotrophic reservoir, exhibited aerobic denitrifying capacity under low-carbon environments. Up to 76.79-81.64 % of total organic carbon (TOC) and 51.48-67.60 % of NO3--N were removed by XT6 within 48 h at C/N ratios of 2.0-3.0. Additionally, the nitrogen balance experiments further manifested that 26.27-38.13 % of NO3--N was lost in gaseous form. As the C/N ratio decreased, XT6 tended to generate more extracellular polymeric substances (EPS), with the tightly bound EPS showing the largest increase. Pseudomonas and Variovorax were quite abundant in XT6, constituting 59.69 % and 28.65 % of the total sequences, respectively. Furthermore, metagenomics analysis evidenced that XT6 removed TOC and nitrate mainly through the tricarboxylic acid cycle and aerobic denitrification. Overall, the abovementioned results provide a deeper understanding of the nitrogen metabolic pathways of indigenous aerobic denitrifying bacterial communities with low C/N ratios and offer useful guidance for controlling nitrogen pollution in oligotrophic ecosystems.


Asunto(s)
Carbono , Desnitrificación , Metagenómica , Nitratos , Nitrógeno , Contaminantes Químicos del Agua , Nitratos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Nitrógeno/metabolismo , Carbono/metabolismo , Bacterias/metabolismo , Aerobiosis , Biodegradación Ambiental
6.
Environ Res ; 262(Pt 1): 119866, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39208973

RESUMEN

Aerobic methane (CH4) oxidation coupled to denitrification (AME-D) is a promising process for the denitrification of low C/N wastewater. Compared with anaerobic denitrifying bacteria, aerobic denitrifying bacteria may enable AME-D have high denitrification ability under aerobic conditions. This study constructed a novel aerobic methane oxidation coupled to aerobic denitrification (AME-AD) system using the typical aerobic denitrifying bacteria Paracoccus pantotrophus ATCC35512 and the typical aerobic methane oxidizing bacteria Methylosinus trichosporium OB3b. The denitrification and CH4 oxidations of AME-AD with different O2:CH4 ratios (0:1, 0.25:1, 0.5:1, 0.75:1, 1:1 and 1.25:1) and CH4 concentrations (0, 14000, 28000, 42000, 56000 and 70000 mg m-3) were investigated in batch experiments. Higher O2:CH4 ratios can significantly improve the denitrification and CH4 oxidations of the AME-AD (P < 0.05). The treatment with an O2:CH4 ratio of 1.25:1 had the highest denitrification rate (0.036 mg h-1) and highest CH4 oxidation rate (0.20 mg h-1). The CH4 concentration in the headspace was positively correlated with the AME-AD denitrification rate. The calculated CH4/NO3-(mol/mol) in most treatments ranged from 5.76 to 6.84. In addition, excessively high O2 and CH4 concentrations can lead to increased nitrous oxide (N2O) production in AME-AD. The N2O production rate was up to 1.00 µg h-1 when the O2:CH4 was 1.25:1. These results can provide data support for the application of AME-AD for low-C/N wastewater treatment and greenhouse gas emission reduction.

7.
J Hazard Mater ; 476: 135160, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38991646

RESUMEN

The heterotrophic nitrification-aerobic denitrification (HNAD) strain Exiguobacterium H1 (H1) was isolated in this study. The changes in nitrogen metabolism functions of H1 strain were discussed in presence of disinfectants chloroxylenol (PCMX) and benzethonium chloride (BEC) alone and combined pollution (PCMX+BEC). The H1 strain could use NH4+-N, NO2--N and NO3--N as nitrogen sources and had good nitrogen removal performance under conditions of C/N ratio 25, pH 5-8, 25-35 oC and sodium acetate as carbon. PCMX and BEC alone exhibited hormesis effects on H1 strain which promoted the growth of H1 strain at low concentrations but inhibited it at high concentrations, and combined pollution showed synergistic inhibitory on H1 strain. H1 strain owned a full nitrogen metabolic pathway according to functional genes quantification. PCMX encouraged nitrification process of H1, while BEC and combined pollution mostly blocked nitrogen removal. PCMX, but not BEC, mainly led to the enrichment of resistance genes. These findings will aid in systematic assessment of contaminant tolerance characteristics of HNAD strain and its application prospects.


Asunto(s)
Desnitrificación , Desinfectantes , Nitrificación , Nitrificación/efectos de los fármacos , Desinfectantes/toxicidad , Desnitrificación/efectos de los fármacos , Hormesis/efectos de los fármacos , Xilenos/toxicidad , Aerobiosis , Sinergismo Farmacológico , Contaminantes Químicos del Agua/toxicidad , Procesos Heterotróficos , Nitrógeno/metabolismo
8.
J Biosci Bioeng ; 138(4): 338-344, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39030116

RESUMEN

Humic acid (HA), a common natural organic matter, could affect conventional anoxic denitrification. Aim of this study was to investigate effect of HA on the process of aerobic denitrification in Achromobacter sp. GAD-3, an aerobic denitrifying strain. The findings demonstrated that an increase in HA concentrations (≥5 mg L-1) promoted the aerobic denitrification process (excluding N2O reduction), manifesting as higher rates of nitrate removal (6.67-11.1 mg L-1 h-1) and lower levels of nitrite accumulation (30.2-20.7 mg L-1). This was attributed to the increased electron transfer activities and denitrifying reductase activities (including NAR, NIR and NOR) facilitated by HA. Accordingly, the expression of denitrification genes such as napA, cnorB, and nirS was enhanced by HA. Nonetheless, the nosZ gene and N2OR activity underwent suppression by HA, which was accountable for N2O emission. It is crucial to understand the HA mechanism towards aerobic denitrifiers for wastewater treatment plants to enhance nitrogen removal.


Asunto(s)
Achromobacter , Desnitrificación , Sustancias Húmicas , Nitratos , Achromobacter/metabolismo , Achromobacter/genética , Aerobiosis , Nitratos/metabolismo , Nitritos/metabolismo , Aguas Residuales/microbiología , Aguas Residuales/química , Nitrógeno/metabolismo
9.
Bioresour Technol ; 408: 131151, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053599

RESUMEN

This research evaluated a microalgae consortium (MC) in a pilot-scale tubular photobioreactor for municipal wastewater (MWW) treatment, compared with an aeration column photobioreactor. Transitioning from suspended MC to a microalgae-microbial biofilm (MMBF) maintained treatment performance despite increasing influent from 50 L to 150 L in a 260 L system. Carbon and nitrogen removal were effective, but phosphorus removal varied due to biofilm shading and the absence of phosphorus-accumulating organisms. High influent flow caused MMBF detachment due to shear stress. Stabilizing and re-establishing the MMBF showed that a stable phycosphere influenced microbial diversity and interactions, potentially destabilizing the MMBF. Heterotrophic nitrification-aerobic denitrification bacteria were crucial for MC equilibrium. Elevated gene expression related to nitrogen fixation, organic nitrogen metabolism, and nitrate reduction confirmed strong microalgal symbiosis, highlighting MMBF's treatment potential. This study supports the practical application of microalgae in wastewater treatment.


Asunto(s)
Biopelículas , Desnitrificación , Procesos Heterotróficos , Microalgas , Nitrógeno , Fotobiorreactores , Aguas Residuales , Microalgas/metabolismo , Aguas Residuales/microbiología , Fotobiorreactores/microbiología , Nitrógeno/metabolismo , Fósforo , Purificación del Agua/métodos , Aerobiosis , Carbono/metabolismo , Carbono/farmacología , Eliminación de Residuos Líquidos/métodos
10.
Sci Total Environ ; 947: 174636, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38992368

RESUMEN

Construct a bacteria-algae symbiotic dynamic sponge bioremediation system to simultaneously remove multiple pollutants under micro-pollution conditions. The average removal efficiencies of NH4+-N, PO43--P, total nitrogen (TN), and Ca2+ were 98.35, 78.74, 95.64, and 84.92 %, respectively. Comparative studies with Auxenochlorella sp. sponge and bacterial sponge bioremediation system confirmed that NH4+-N and TN were mainly removed by bacterial heterotrophic nitrification - aerobic denitrification (HN-AD). PO43--P was removed by algal assimilation and the generation of Ca3(PO4)2 and Ca5(PO4)3OH, and Ca2+ was removed by algal electron transfer formation of precipitates and microbially induced calcium precipitation (MICP) by bacteria. Algae provided an aerobic environment for the bacterial HN-AD process through photosynthesis, while respiration produced CO2 and adsorbed Ca2+ to promote the formation of calcium precipitates. Immobilization of Ca2+ with microalgae via bacterial MICP helped to lift microalgal photoinhibition. The bioremediation system provides theoretical support for research on micropolluted water treatment while increasing phosphorus recovery pathways.


Asunto(s)
Biodegradación Ambiental , Nitrógeno , Fósforo , Contaminantes Químicos del Agua , Fósforo/metabolismo , Contaminantes Químicos del Agua/metabolismo , Nitrógeno/metabolismo , Compuestos de Amonio/metabolismo , Bacterias/metabolismo , Simbiosis , Animales , Poríferos/microbiología , Poríferos/fisiología , Microalgas/metabolismo , Microalgas/fisiología , Eliminación de Residuos Líquidos/métodos , Nitrificación , Desnitrificación
11.
Environ Res ; 258: 119460, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38906451

RESUMEN

To investigate the inhibitory effects of various transition metal ions on nitrogen removal and their underlying mechanisms, the single and combined effects of Cu2+ Ni2+ and Zn2+ on Heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria Acinetobacter sp. TAC-1 were studied in a batch experiment system. The results revealed that increasing concentrations of Cu2+ and Ni2+ had a detrimental effect on the removal of ammonium nitrogen (NH4+-N) and total nitrogen (TN). Specifically, Cu2+ concentration of 10 mg/L, the TN degradation rate was 55.09%, compared to 77.60% in the control group. Cu2+ exhibited a pronounced inhibitory effect. In contrast, Zn2+ showed no apparent inhibitory effect on NH4+-N removal and even enhanced TN removal at lower concentrations. However, when the mixed ion concentration of Zn2++Ni2+ exceeded 5 mg/L, the removal rates of NH4+-N and TN were significantly reduced. Moreover, transition metal ions did not significantly impact the removal rates of chemical oxygen demand (COD). The inhibition model fitting results indicated that the inhibition sequence was Cu2+ > Zn2+ > Ni2+. Transcriptome analysis demonstrated that metal ions influence TAC-1 activity by modulating the expression of pivotal genes, including zinc ABC transporter substrate binding protein (znuA), ribosomal protein (rpsM), and chromosome replication initiation protein (dnaA) and DNA replication of TAC-1 under metal ion stress, leading to disruptions in transcription, translation, and cell membrane structure. Finally, a conceptual model was proposed by us to summarize the inhibition mechanism and possible response strategies of TAC-1 bacteria under metal ion stress, and to address the lack of understanding regarding the influence mechanism of TAC-1 on nitrogen removal in wastewater co-polluted by metal and ammonia nitrogen. The results provided practical guidance for the management of transition metal and ammonia nitrogen co-polluted water bodies, as well as the removal of high nitrogen.


Asunto(s)
Desnitrificación , Nitrificación , Acinetobacter/metabolismo , Acinetobacter/genética , Procesos Heterotróficos , Aerobiosis , Elementos de Transición/metabolismo , Nitrógeno/metabolismo , Contaminantes Químicos del Agua/metabolismo
12.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38913498

RESUMEN

Nitrous oxide (N2O) is a potent greenhouse gas of primarily microbial origin. Oxic and anoxic emissions are commonly ascribed to autotrophic nitrification and heterotrophic denitrification, respectively. Beyond this established dichotomy, we quantitatively show that heterotrophic denitrification can significantly contribute to aerobic nitrogen turnover and N2O emissions in complex microbiomes exposed to frequent oxic/anoxic transitions. Two planktonic, nitrification-inhibited enrichment cultures were established under continuous organic carbon and nitrate feeding, and cyclic oxygen availability. Over a third of the influent organic substrate was respired with nitrate as electron acceptor at high oxygen concentrations (>6.5 mg/L). N2O accounted for up to one-quarter of the nitrate reduced under oxic conditions. The enriched microorganisms maintained a constitutive abundance of denitrifying enzymes due to the oxic/anoxic frequencies exceeding their protein turnover-a common scenario in natural and engineered ecosystems. The aerobic denitrification rates are ascribed primarily to the residual activity of anaerobically synthesised enzymes. From an ecological perspective, the selection of organisms capable of sustaining significant denitrifying activity during aeration shows their competitive advantage over other heterotrophs under varying oxygen availabilities. Ultimately, we propose that the contribution of heterotrophic denitrification to aerobic nitrogen turnover and N2O emissions is currently underestimated in dynamic environments.


Asunto(s)
Bacterias , Desnitrificación , Microbiota , Óxido Nitroso , Óxido Nitroso/metabolismo , Aerobiosis , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Procesos Heterotróficos , Nitratos/metabolismo , Oxígeno/metabolismo , Nitrógeno/metabolismo , Nitrificación
13.
J Hazard Mater ; 476: 135057, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38943884

RESUMEN

Low-dosage nitrate pollutants can contribute to eutrophication in surface water bodies, such as lakes and reservoirs. This study employed assembled denitrifying bacterial-fungal communities as bio-denitrifiers, in combination with zero-valent iron (ZVI), to treat micro-polluted water. Immobilized bacterial-fungal mixed communities (IBFMC) reactors demonstrated their ability to reduce nitrate and organic carbon by over 43.2 % and 53.7 %, respectively. Compared to IBFMC reactors, IBFMC combined with ZVI (IBFMC@ZVI) reactors exhibited enhanced removal efficiencies for nitrate and organic carbon, reaching the highest of 31.55 % and 17.66 %, respectively. The presence of ZVI in the IBFMC@ZVI reactors stimulated various aspects of microbial activity, including the metabolic processes, electron transfer system activities, abundance of functional genes and enzymes, and diversity and richness of microbial communities. The contents of adenosine triphosphate and electron transfer system activities enhanced more than 5.6 and 1.43 folds in the IBFMC@ZVI reactors compared with IBFMC reactors. Furthermore, significant improvement of crucial genes and enzyme denitrification chains was observed in the IBFMC@ZVI reactors. Iron played a central role in enhancing microbial diversity and activity, and promoting the supply, and transfer of inorganic electron donors. This study presents an innovative approach for applying denitrifying bacterial-fungal communities combined with iron enhancing efficient denitrification in micro-polluted water.


Asunto(s)
Bacterias , Desnitrificación , Hongos , Hierro , Contaminantes Químicos del Agua , Hierro/metabolismo , Hierro/química , Contaminantes Químicos del Agua/metabolismo , Hongos/metabolismo , Hongos/genética , Bacterias/genética , Bacterias/metabolismo , Reactores Biológicos , Nitratos/metabolismo , Aerobiosis , Purificación del Agua/métodos
14.
Water Sci Technol ; 89(11): 3007-3020, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877627

RESUMEN

To assess the possibility of using aerobic denitrification (AD) bacteria with high NO2--N accumulation for nitrogen removal in wastewater treatment, conditional optimization, as well as sole and mixed nitrogen source tests involving AD bacterium, Comamonas sp. pw-6 was performed. The results showed that the optimal carbon source, pH, C/N ratio, rotational speed, and salinity for this strain were determined to be succinate, 7, 20, 160 rpm, and 0%, respectively. Further, this strain preferentially utilized NH4+-N, NO3--N, and NO2--N, and when NO3--N was its sole nitrogen source, 92.28% of the NO3--N (150 mg·L-1) was converted to NO2--N. However, when NH4+-N and NO3--N constituted the mixed nitrogen source, NO3--N utilization by this strain was significantly lower (p < 0.05). Therefore, a strategy was proposed to combine pw-6 bacteria with traditional autotrophic nitrification to achieve the application of pw-6 bacteria in NH4+-N-containing wastewater treatment. Bioaugmented application experiments showed significantly higher NH4+-N removal (5.96 ± 0.94 mg·L-1·h-1) and lower NO3--N accumulation (2.52 ± 0.18 mg·L-1·h-1) rates (p < 0.05) than those observed for the control test. Thus, AD bacteria with high NO2--N accumulation can also be used for practical applications, providing a basis for expanding the selection range of AD strains for wastewater treatment.


Asunto(s)
Comamonas , Desnitrificación , Nitrógeno , Eliminación de Residuos Líquidos , Aguas Residuales , Nitrógeno/metabolismo , Comamonas/metabolismo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Aerobiosis , Purificación del Agua/métodos , Contaminantes Químicos del Agua/metabolismo
15.
Chemosphere ; 361: 142525, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838867

RESUMEN

Pseudomonas sp. ZHL02, removing nitrogen via ammonia nitrogen (NH4+) → hydroxylamine (HN2OH) → nitrite (NO2-) → nitrate (NO3-) → NO2- → nitric oxide (NO) → nitrous oxide (N2O) pathway was employed for getting in-depth information on the heterotrophic nitrification-aerobic denitrification (HNAD) pathway from carbon oxidation, nitrogen conversion, electron transport process, enzyme activity, as well as gene expression while sodium succinate, sodium citrate, and sodium acetate were utilized as the carbon sources. The nitrogen balance analysis results demonstrated that ZHL02 mainly removed NH4+-N through assimilation. The carbon source metabolism resulted in the discrepancies in electron transport chain and nitrogen removal between different HNAD bacteria. Moreover, the prokaryotic strand-specific transcriptome method showed that, amo and hao were absent in ZHL02, and unknown genes may be involved in ZHL02 during the HNAD process. As a fascinating process for removing nitrogen, the HNAD process is still puzzling, and the relationship between carbon metabolism and nitrogen metabolism among different HNAD pathways should be studied further.


Asunto(s)
Carbono , Desnitrificación , Procesos Heterotróficos , Nitrificación , Nitrógeno , Carbono/metabolismo , Nitrógeno/metabolismo , Pseudomonas/metabolismo , Aerobiosis , Nitritos/metabolismo , Nitratos/metabolismo
16.
Ecotoxicol Environ Saf ; 280: 116588, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878332

RESUMEN

Simultaneous heterotrophic nitrification and aerobic denitrification (SND) is gaining tremendous attention due to its high efficiency and low cost in water treatment. However, SND on an industrial scale is still immature since effects of coexisting pollutants, for example, heavy metals, on nitrogen removal remains largely unresolved. In this study, a HNAD bacterium (Pseudomonas sp. XF-4) was isolated. It could almost completely remove ammonium and nitrate at pH 5-9 and temperature 20 ℃-35 ℃ within 10 h, and also showed excellently simultaneous nitrification and denitrification efficiency under the coexistence of any two of inorganic nitrogen sources with no intermediate accumulation. XF-4 could rapidly grow again after ammonium vanish when nitrite or nitrate existed. There was no significant effects on nitrification and denitrification when Cd(II) was lower than 10 mg/L, and 95 % of Cd(II) was removed by XF-4. However, electron carrier and electron transport system activity was inhibited, especially at high concentration of Cd(II). Overall, this study reported a novel strain capable of simultaneous nitrification and denitrification coupled with Cd(II) removal efficiently. The results provided new insights into treatment of groundwater or wastewater contaminated by heavy metals and nitrogen.


Asunto(s)
Cadmio , Desnitrificación , Nitrificación , Nitrógeno , Pseudomonas , Contaminantes Químicos del Agua , Cadmio/metabolismo , Pseudomonas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Nitrógeno/metabolismo , Procesos Heterotróficos , Nitratos/metabolismo , Aguas Residuales/microbiología , Aguas Residuales/química , Biodegradación Ambiental , Aerobiosis , Purificación del Agua/métodos , Compuestos de Amonio/metabolismo
17.
Proc Natl Acad Sci U S A ; 121(26): e2316422121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38900790

RESUMEN

Nitrous oxide is a potent greenhouse gas whose production is catalyzed by nitric oxide reductase (NOR) members of the heme-copper oxidoreductase (HCO) enzyme superfamily. We identified several previously uncharacterized HCO families, four of which (eNOR, sNOR, gNOR, and nNOR) appear to perform NO reduction. These families have novel active-site structures and several have conserved proton channels, suggesting that they might be able to couple NO reduction to energy conservation. We isolated and biochemically characterized a member of the eNOR family from the bacterium Rhodothermus marinus and found that it performs NO reduction. These recently identified NORs exhibited broad phylogenetic and environmental distributions, greatly expanding the diversity of microbes in nature capable of NO reduction. Phylogenetic analyses further demonstrated that NORs evolved multiple times independently from oxygen reductases, supporting the view that complete denitrification evolved after aerobic respiration.


Asunto(s)
Óxido Nítrico , Oxidación-Reducción , Oxidorreductasas , Filogenia , Óxido Nítrico/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Archaea/metabolismo , Archaea/genética , Rhodothermus/metabolismo , Rhodothermus/enzimología , Rhodothermus/genética , Evolución Molecular , Bacterias/metabolismo , Bacterias/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química
18.
Mar Pollut Bull ; 203: 116381, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692001

RESUMEN

Due to the widespread use of sliver nanoparticles (AgNPs), a large amount of AgNPs has inevitably been released into the environment, and there is growing concern about the toxicity of AgNPs to nitrogen-functional bacteria. In addition to traditional anaerobic denitrifying bacteria, heterotrophic nitrification-aerobic denitrification (HNAD) bacteria are also important participants in the nitrogen cycle. However, the mechanisms by which AgNPs influence HNAD bacteria have yet to be explicitly demonstrated. In this study, the inhibitory effects of different concentrations of AgNPs on a HNAD bacteria Zobellella sp. B307 were investigated, and the underlying mechanism was explored by analyzing the antioxidant system and the activities of key denitrifying enzymes. Results showed that AgNPs could inhibit the growth and the HNAD ability of Zobellella sp. B307. AgNPs could accumulate on the surface of bacterial cells and significantly destroyed the cell membrane integrity. Further studies demonstrated that the presence of high concentration of AgNPs could result in the overproduction of reactive oxygen species (ROS) and related oxidative stress in the cells. Furthermore, the catalytic activities of key denitrifying enzymes (nitrate reductase (NAR), nitrite reductase (NIR), and nitrous oxide reductase (N2OR)) were significantly suppressed under exposure to a high concentration of AgNPs (20 mg·L-1), which might be responsible for the inhibited nitrogen removal performance of strain B307. This work could improve our understanding of the inhibitory effect and underlying mechanism of AgNPs on HNAD bacteria.


Asunto(s)
Desnitrificación , Nanopartículas del Metal , Nitrificación , Nitrógeno , Nanopartículas del Metal/toxicidad , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Nitrito Reductasas/metabolismo , Procesos Heterotróficos
19.
Bioresour Technol ; 402: 130801, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710419

RESUMEN

The construction of aerobic denitrification (AD) systems in an antibiotic-stressed environment is a serious challenge. This study investigated strategy of cyclic stress with concentration gradient (5-30 mg/L) of sulfamethoxazole (SMX) in a sequencing batch reactor (SBR), to achieve operation of AD. Total nitrogen removal efficiency of system increased from about 10 % to 95 %. Original response of abundant-rare genera to antibiotics was changed by SMX stress, particularly conditionally rare or abundant taxa (CRAT). AD process depends on synergistic effect of heterotrophic nitrifying aerobic denitrification bacteria (Paracoccus, Thauera, Hypomicrobium, etc). AmoABC, napA, and nirK were functionally co-expressed with multiple antibiotic resistance genes (ARGs) (acrR, ereAB, and mdtO), facilitating AD process. ARGs and TCA cycling synergistically enhance the antioxidant and electron transport capacities of AD process. Antibiotic efflux pump mechanism played an important role in operation of AD. The study provides strong support for regulating activated sludge to achieve in situ AD function.


Asunto(s)
Reactores Biológicos , Desnitrificación , Sulfametoxazol , Sulfametoxazol/farmacología , Aerobiosis , Aguas del Alcantarillado/microbiología , Antibacterianos/farmacología , Nitrógeno/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
20.
J Environ Manage ; 358: 120912, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636417

RESUMEN

With the enhancement of environmental governance regulations, the discharge requirements for reverse osmosis wastewater have become increasingly stringent. This study proposes an innovative approach utilizing heterotrophic nitrification and aerobic denitrification (HNAD)-based biomineralization technology, combined with coconut palm silk loaded biochar, to offer a novel solution for resource-efficient and eco-friendly treatment of reverse osmosis wastewater. Zobellella denitrificans sp. LX16 were loaded onto modified coir silk and showed removal efficiencies of up to 97.38, 94.58, 86.24, and 100% for NH4+-N (65 mg L-1), COD (900 mg L-1), Ca2+ (180 mg L-1), and Cd2+ (25 mg L-1). Analysis of the metabolites of microorganisms reveals that coconut palm silk loaded with deciduous biochar (BCPS) not only exerts a protective effect on microorganisms, but also enhances their growth, metabolism, and electron transfer capabilities. Characterization of precipitation phenomena elucidated the mechanism of Cd2+ removal via ion exchange, precipitation, and adsorption. Employing high-throughput and KEGG functional analyses has confirmed the biota environmental response strategies and the identification of key genes like HNAD.


Asunto(s)
Amoníaco , Biopelículas , Reactores Biológicos , Cadmio , Calcio , Nitrógeno , Cadmio/metabolismo , Calcio/metabolismo , Amoníaco/metabolismo , Nitrógeno/metabolismo , Aguas Residuales/química , Desnitrificación , Carbón Orgánico/química , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA