Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Hazard Mater ; 476: 135148, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38986415

RESUMEN

Aflatoxin B1 (AFB1) is the most toxic mycotoxin commonly found in the environment. Finding efficient and environmentally friendly ways to remove AFB1 is critical. In this study, Aspergillus luchuensis YZ-1 demonstrated a potent ability to adsorb AFB1 for the first time, and the binding of AFB1 to YZ-1 is highly stable. Spores exhibited higher adsorption efficiency than mycelia, adsorbing approximately 95 % of AFB1 within 15 min. The spores were comprehensively characterized using scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and atomic force microscopy. Various adsorption kinetic models (pseudo-first and pseudo-second order), adsorption isotherm models (Freundlich and Langmuir), Fourier transform infrared, and X-ray photoelectron spectroscopy were used to investigate the adsorption properties and mechanisms. The adsorption capacity of spores decreased with heating, urea, and SDS treatments, indicating that spore proteins may be the primary substance for AFB1 adsorption. Subsequent experiments showed that proteins with molecular weights greater than 50 kDa played a key role in the adsorption. Additionally, the spores possess excellent storage properties and are valuable for adsorbing AFB1 from vegetable oils. Therefore, the YZ-1 spores hold promise for development into a novel biosorbent for AFB1 removal.


Asunto(s)
Aflatoxina B1 , Aspergillus , Esporas Fúngicas , Aflatoxina B1/química , Aflatoxina B1/metabolismo , Adsorción , Aspergillus/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cinética
2.
Molecules ; 29(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930987

RESUMEN

Peanut shells' adsorption performance in caffeine and triclosan removal was studied. Peanut shells were analyzed for their chemical composition, morphology, and surface functional groups. Batch adsorption and fixed-bed column experiments were carried out with solutions containing 30 mg/L of caffeine and triclosan. The parameters examined included peanut shell particle size (120-150, 300-600, and 800-2000 µm), adsorbent dose (0.02-60 g/L), contact time (up to 180 min), bed height (4-8 cm), and hydraulic loading rate (2.0 and 4.0 m3/m2-day). After determining the optimal adsorption conditions, kinetics, isotherm, and breakthrough curve models were applied to analyze the experimental data. Peanut shells showed an irregular surface and consisted mainly of polysaccharides (around 70% lignin, cellulose, and hemicellulose), with a specific surface area of 1.7 m2/g and a pore volume of 0.005 cm3/g. The highest removal efficiencies for caffeine (85.6 ± 1.4%) and triclosan (89.3 ± 1.5%) were achieved using the smallest particles and 10.0 and 0.1 g/L doses over 180 and 45 min, respectively. Triclosan showed easier removal compared to caffeine due to its higher lipophilic character. The pseudo-second-order kinetics model provided the best fit with the experimental data, suggesting a chemisorption process between caffeine/triclosan and the adsorbent. Equilibrium data were well-described by the Sips model, with maximum adsorption capacities of 3.3 mg/g and 289.3 mg/g for caffeine and triclosan, respectively. In fixed-bed column adsorption tests, particle size significantly influenced efficiency and hydraulic behavior, with 120-150 µm particles exhibiting the highest adsorption capacity for caffeine (0.72 mg/g) and triclosan (143.44 mg/g), albeit with clogging issues. The experimental data also showed good agreement with the Bohart-Adams, Thomas, and Yoon-Nelson models. Therefore, the findings of this study highlight not only the effective capability of peanut shells to remove caffeine and triclosan but also their versatility as a promising option for water treatment and sanitation applications in different contexts.


Asunto(s)
Arachis , Cafeína , Triclosán , Cafeína/química , Cafeína/aislamiento & purificación , Triclosán/química , Triclosán/aislamiento & purificación , Arachis/química , Adsorción , Cinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Tamaño de la Partícula , Purificación del Agua/métodos
3.
Int J Biol Macromol ; 261(Pt 2): 129882, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309405

RESUMEN

This research investigates the application of an innovative bio-nanocomposite, Fenugreek seed mucilage/silicon carbide (FSM/SiC), as an exceptionally effective adsorbent for eliminating cadmium ions from aqueous solutions. Optimization of fenugreek mucilage extraction involved ultrasonic methods, establishing ideal conditions with a solid-to-solvent ratio of 1:55, 50 °C temperature, 37 kHz frequency, 100 % power, and 30 min processing time. Comprehensive characterization through FTIR spectroscopy, XRD, imaging, DLS, and SEM confirmed the preservation of crucial adsorption-related characteristics. Enhanced adsorption efficiency was achieved by systematically adjusting pH, temperature, adsorbent concentration, pollutant concentration, and contact time, identifying optimal conditions at pH 6, 0.03 g adsorbent dosage, 35 min contact time, and 30 mg/L initial cadmium concentration at 30 °C. Adsorption kinetics followed a pseudo-second-order model, while the Langmuir isotherm fit suggested monolayered adsorption. Thermodynamic analysis indicated exothermic and spontaneous Cd2+ ion adsorption onto FSM/SiC. Remarkably, FSM/SiC demonstrated exceptional regeneration potential, positioning it as a promising solution for water decontamination and environmental remediation. This research showcases FSM/SiC's potential with a maximum adsorption capacity of 41.6 mg/g for cadmium ions, highlighting its significance in addressing cadmium contamination.


Asunto(s)
Nanocompuestos , Extractos Vegetales , Trigonella , Contaminantes Químicos del Agua , Cadmio/química , Termodinámica , Agua/química , Iones , Adsorción , Cinética , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química
4.
Environ Manage ; 73(2): 408-424, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37537396

RESUMEN

This study investigated the adsorption performance of biochar produced from different types of urban biowaste material viz., sugarcane bagasse (SB), brinjal stem (BS), and citrus peel (CP) for removal of heavy metal ions (Pb, Cu, Cr, and Cd) from aqueous solution. The effects of biowaste material, dosage of biochar, solution pH, and initial concentration of heavy metal ions and isotherm models were performed to understand the possible adsorption mechanisms. The results showed that the biochar derived from BS and SB removes Cu (99.94%), Cr (99.57%), and Cd (99.77%) whereas biochar derived from CP removes Pb (99.59%) and Cu (99.90%) more efficiently from the aqueous solution. Biochar derived from BS showed maximum adsorption capacity for Cu (246.31 mg g-1), Pb (183.15 mg g-1), and Cr (71.89 mg g-1) while the biochar derived from CP showed highest for Cd (15.46 mg g-1). Moreover, biochar derived from BS and SB has more polar functional groups and less hydrophobicity than the biochar derived from CP. This study reveals that solution pH and biochar doses play a major role in removal of heavy metal ions from aqueous solution. The results of Langmuir model fitted well for Pb and Cu while the Freundlich model for Cr and Cd. Our study concludes that the biochar derived from different biowaste materials adsorbs heavy metal ions majorly through surface complexation and precipitation processes. The results of this study will be very useful in selecting the effective urban biowaste material for making biochar for heavy metal removal from the aqueous environment.


Asunto(s)
Metales Pesados , Saccharum , Contaminantes Químicos del Agua , Cadmio/análisis , Celulosa , Adsorción , Plomo , Contaminantes Químicos del Agua/análisis , Carbón Orgánico , Agua , Cinética
5.
Environ Monit Assess ; 195(11): 1345, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857875

RESUMEN

The sequestration of contaminants from wastewater, such as heavy metals, has become a major global issue. Multiple technologies have been developed to address this issue. Nanotechnology is attracting significant interest as a new technology, and numerous nanomaterials have been produced for sequestrating heavy metals from polluted water due to their superior properties arising from the nanoscale effect. This study reports biosynthesis of iron oxide nanoparticles (IO-NPs) and their applications for adsorptive sequestration of various metal ions from aqueous solutions. Biosynthesis of IO-NPs has been carried out by using leaf extract of Spilanthes acmella, a medicinal plant. FTIR analysis of the leaf extract and biosynthesized IO-NPs marked the role of various functional groups in biosynthesis of IO-NPs. FESEM analysis revealed the average size range of IO-NPs as 50 to 80 nm, while polydisperse nature was confirmed by DLS analysis. EDX analysis revealed the presence of Fe, O, and C atoms in the elemental composition of the NPs. The antioxidant potential of the biosynthesized IO-NPs (IC50 = 136.84 µg/mL) was confirmed by DPPH assay. IO-NPs were also used for the adsorptive removal of As3+, Co2+, Cd2+, and Cu2+ ions from aqueous solutions with process optimization at an optimized pH (7.0) using dosage of IO-NPs as 0.6 g/L (As3+ and Co2+) and 0.8 g/L (Cd2+ and Cu2+). Adsorption isotherm analysis revealed the maximum adsorption efficiency for As3+ (21.83 mg/g) followed by Co2+ (20.43 mg/g), Cu2+ (15.29 mg/g), and Cd2+ (13.54 mg/g) using Langmuir isotherm model. The biosynthesized IO-NPs were equally efficient in the simultaneous sequestration of these heavy metal ions signifying their potential as effective nanoadsorbents.


Asunto(s)
Nanopartículas del Metal , Metales Pesados , Contaminantes Químicos del Agua , Antioxidantes/análisis , Cadmio/análisis , Adsorción , Monitoreo del Ambiente , Metales Pesados/análisis , Extractos Vegetales/análisis , Iones/análisis , Nanopartículas Magnéticas de Óxido de Hierro , Contaminantes Químicos del Agua/análisis , Cinética , Concentración de Iones de Hidrógeno , Nanopartículas del Metal/química
6.
Materials (Basel) ; 16(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37048943

RESUMEN

A porous CeO2 was synthesized following the addition of guanidine carbonate to a Ce3+ aqueous solution, the subsequent addition of hydrogen peroxide and a final hydrothermal treatment. The optimal experimental parameters for the synthesis of porous CeO2, including the amounts of guanidine carbonate and hydrogen peroxide and the hydrothermal conditions, were determined by taking the adsorption efficiency of acid orange 7 (AO7) dye as the evaluation. A template-free hydrothermal strategy could avoid the use of soft or hard templates and the subsequent tedious procedures of eliminating templates, which aligned with the goals of energy conservation and emission reduction. Moreover, both the guanidine carbonate and hydrogen peroxide used in this work were accessible and eco-friendly raw materials. The porous CeO2 possessed rapid adsorption capacities for AO7 dye. When the initial concentration of AO7 was less than 130 mg/L, removal efficiencies greater than 90.0% were obtained, achieving a maximum value of 97.5% at [AO7] = 100 mg/L and [CeO2] = 2.0 g/L in the first 10 min of contact. Moreover, the adsorption-desorption equilibrium between the porous CeO2 adsorbent and the AO7 molecule was basically established within the first 30 min. The saturated adsorption amount of AO7 dye was 90.3 mg/g based on a Langmuir linear fitting of the experimental data. Moreover, the porous CeO2 could be recycled using a NaOH aqueous solution, and the adsorption efficiency of AO7 dye still remained above 92.5% after five cycles. This study provided an alternative porous adsorbent for the purification of dye wastewater, and a template-free hydrothermal strategy was developed to enable the design of CeO2-based catalysts or catalyst carriers.

7.
Environ Res ; 218: 115002, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509117

RESUMEN

To remove contaminants and pollutants from wastewater systems, adsorbents are widely used. Geopolymers offer a convenient alternative as adsorbents in the wastewater treatment system as they are low-cost, environmentally friendly, and safer. A new adsorbent material prepared by coating nano copper oxide on the surface of alkali-activated metakaolin showed a higher ability to remove methylene blue (MB) dye from wastewater, thus making them attractive in dye removal applications. First, nano copper oxide was prepared by sol gel method and metakaolin geopolymer was produced using sodium silicate solution having a Ms value of 1.1 (M). Afterwards, nano copper oxide (MC) was coated on the surface of the geopolymer. The ability of MB dye to bind to both pristine (Mp, MCp) and powder forms (Mpr, MCpr) of the geopolymer was evaluated. X-ray diffraction revealed that the halo found at 27.40°-31.077° (2θvalue) in both samples related to amorphous gel's composition and the major peaks of copper oxide in MCpr were sited at a 2θ value of 35.45° and 38.88°.The dye removal efficiency can be inferred from the increased adsorption capacity of 11.9 mg/g (Mp) and 14.4 mg/g (MCp) for the monolith form and 81.43 mg/g (Mpr) and 87.82 mg/g (MCpr) for the powder form. The adsorption of reused active sites was 73% for Mpr and 83% for MCpr up to the fifth cycle after regeneration by heat treatment at 400 °C. The models that best suited the adsorption data were pseudo-second-order and Freundlich isotherms, which indicated possible chemisorption with intra-particle diffusion. Furthermore, the binding energy is shifted to lower value in XPS spectra due to dye adsorption arising from electrostatic attraction. A higher electron density is formed due to interaction with an equal contribution of silanol Si-O-H and Si-O-Na/Cu(O1s). The adsorbents are effective over a wide pH range and their improved recycling capability increases their applications for a wide range of uses.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Polvos , Contaminantes Químicos del Agua/análisis , Álcalis , Adsorción , Cinética , Azul de Metileno/química , Óxidos/análisis , Concentración de Iones de Hidrógeno
8.
J Biomed Mater Res B Appl Biomater ; 110(4): 828-837, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34767679

RESUMEN

Hyperbilirubinemia caused severe hepatobiliary diseases with various causes, especially hepatic fibrosis and cirrhosis caused by end-stage hepatitis B and C. Plasma adsorption perfusion (PP) has a tremendous advantage in treating patients with hyperbilirubinemia and liver failure, wherein, a safe and effective adsorbent is the key to filter out bilirubin successfully in PP. In this work, a simple engineering strategy, a new porous polymer adsorption resin ERM-0100 based on the homopolymer predispersion system, is proposed to produce high-performance bilirubin adsorbents. Preliminary experimental results show that ERM-0100 exhibits a large surface area and uniformly porous structure. Experimental results verify that ERM-0100 has high biocompatibility and bilirubin adsorption efficiency (TBIL:35%, direct bilirubin [DBIL]:30%, IBIL:87%) that is significantly higher than most of the reported adsorbents. Animal experiments prove that ERM-0100 has high bilirubin adsorption efficiency and can improve the liver function of animals. The combination of high biocompatibility and high adsorption capacity positions the ERM-0100 as a promising candidate for bilirubin removal.


Asunto(s)
Bilirrubina , Enfermedades del Sistema Digestivo , Adsorción , Animales , Humanos , Hiperbilirrubinemia/terapia , Modelos Animales
9.
Nanomaterials (Basel) ; 11(8)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34443737

RESUMEN

Optimizing the physicochemical properties of the chitosan-based activated carbon (Ch-ACs) can greatly enhance its performance toward heavy metal removal from contaminated water. Herein, Ch was converted into a high surface area (1556 m2/g) and porous (0.69 cm3/g) ACs with large content of nitrogen (~16 wt%) using K2CO3 activator and urea as nitrogen-enrichment agents. The prepared Ch-ACs were tested for the removal of Cr(VI) and Pb(II) at different pH, initial metal ions concentration, time, activated carbon dosage, and temperature. For Cr(VI), the best removal was at pH = 2, while for Pb(II) the best pH for its removal was in the range of 4-6. At 25 °C, the Temkin model gives the best fit for the adsorption of Cr(VI), while the Langmuir model was found to be better for Pb(II) ions. The kinetics of adsorption of both heavy metal ions were found to be well-fitted by a pseudo-second-order model. The findings show that the efficiency and the green properties (availability, recyclability, and cost effectiveness) of the developed adsorbent made it a good candidate for wastewaters treatment. As preliminary work, the prepared sorbent was also tested regarding the removal of heavy metals and other contaminations from real wastewater and the obtained results were found to be promising.

10.
ACS Appl Mater Interfaces ; 13(31): 37638-37644, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34324292

RESUMEN

The nicotine addiction problem is of great concern, particularly in adolescents. Notably, nicotine addiction drives humans to continue smoking. Notably, several diseases and disorders are caused by smoking. To date, various adsorbents have been proposed to develop a functionalization filter tip for reducing nicotine content in mainstream smoke. However, the nicotine adsorption efficiencies of most of the reported functionalization filter tips were not satisfactory, and their preparation process was complex and time-consuming. Herein, we demonstrate a highly active and adsorbing filter tip for cigarettes, fabricated by decorating polydopamine (PDA) on the surface of a commercial filter tip in situ. The PDA coating on the filter tip was obtained by the self-polymerization of dopamine (DA) within 16 h, which was quicker and easier than the preparation processes of other reported functionalized filter tips. Significantly, the PDA-decorated filter tip had a nicotine adsorption efficiency as high as ∼95%, which was much higher than most of the commercial filter tips.


Asunto(s)
Fraccionamiento Químico/instrumentación , Indoles/química , Nicotina/aislamiento & purificación , Polímeros/química , Contaminación por Humo de Tabaco , Adsorción , Fraccionamiento Químico/métodos , Nicotina/química , Productos de Tabaco
11.
Environ Sci Pollut Res Int ; 28(43): 61344-61359, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34173952

RESUMEN

The rate of environmental pollution augmenting at an alarming rate due to the continuous disposal of toxic dyes directly into the environment and water streams. The direct contact of dyes with water resources directly affects the living beings. The identification of superior methods for the treatment of water pollution caused due to effluent dyes needs higher consideration among researchers for the well-being of living flora and fauna. The available methods for controlling the decontamination of water through toxic dyes have various drawbacks. So, it is highly significant to develop such materials which can easily adsorb the dyes without causing any toxic effect on the environment and living beings. While keeping all the facts in mind, the current work highlights the comparative enhancement in adsorption capacity and selectivity of Brij-58-coated selenium nanoparticles (Brij-58@Se NPs) towards the removal of bromophenol blue (BB) dye from series of chosen dyes in aqueous media. The fabricated Se NPs were methodically characterized and the adsorption behaviour displayed fast adsorption efficiency (98% within 6 min) for BB dye out of series of chosen dyes. The optimization studies were carried out to verify the influence of working variables such as pH (2.0-12.0), response time (1-10 min), dosage amount (0.1-80 mg/l) and concentration of BB dye (1-70 ppm). The adsorption process found to be best fitted for Freundlich adsorption isotherm and pseudo first-order kinetic model. The interference studies of different cationic, anionic species including dyes or metal ions suggested the higher efficiency of Brij-58@Se NPs for adsorptive removal of BB dye from aqueous media. The efficacy of the adsorbent was further tested in six different water resources and displayed 95% adsorption efficiency for BB dye in different wastewater samples. Therefore, Brij-58@Se NP is expected as a potential adsorbent for the adsorption of organic dyes from wastewater samples.


Asunto(s)
Nanopartículas , Selenio , Contaminantes Químicos del Agua , Adsorción , Colorantes , Tensoactivos , Contaminantes Químicos del Agua/análisis
12.
Artículo en Inglés | MEDLINE | ID: mdl-33171737

RESUMEN

In Korea, concentrations of particulate matter (PM10) are significantly higher in urban railway tunnels (178.1 µg/m3) than in metropolitan areas (49 µg/m3). In railway tunnels in Korea, it was maintained at 3-4 times higher concentration than general atmosphere and platform. Dust generated by trains is scattered at high speed in these tunnels, making filtration difficult; therefore, the development of filters that can be maintained in tunnels is required. In the present study, we examined PM adsorption in the laboratory scale using activated carbon fiber (ACF), which has high adsorption and capacity. The ACF depth, velocity of flow, and fine PM concentration in the tunnel were the experimental variables. We compared PM concentrations before and after the filter experiments, and calculated removal efficiency to determine the optimal conditions. Comprehensive examination of the experimental variables and differential pressure showed that the optimal conditions for an ACF specimen were a wind speed of 3.0 m/s and the ACF depth of 400 mm. The average removal efficiency of PM10 was 55.5%, and that of PM2.5 was 36.6%. The reproducibility tests showed that the ACF filter could be washed and reused and is suitable for various places because it is easily maintained.


Asunto(s)
Adsorción , Contaminantes Atmosféricos/química , Contaminación del Aire/efectos adversos , Fibra de Carbono/química , Material Particulado/química , Contaminantes Atmosféricos/análisis , Carbón Orgánico , Eficiencia , Monitoreo del Ambiente , Humanos , Tamaño de la Partícula , Material Particulado/análisis , Vías Férreas , Reproducibilidad de los Resultados , República de Corea , Ventilación
13.
Nanomaterials (Basel) ; 10(4)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235489

RESUMEN

In order to minimize the pollution caused by the reuse of textile dyes, technologies and materials have been developed that purify waste water in an efficient and cost-effective manner before it is discharged into a water body. In this context, the presented research investigates the potential of two types of fully cellulose-based membranes as adsorbents for cationic dyes used in the textile industry. The first type combines cellulose nanofibrils (CNFs) and carboxymethylated cellulose (CMC) using the solvent casting process and an esterification coupling reaction, while the second type uses commercial bacterial cellulose (BC) in a native and sodium periodate-treated form (BCox). The corresponding membranes were comprehensively evaluated by means of Fourier Transform Infrared (FTIR) Spectroscopy. Results confirm the esterification process within the CNF/CMC membranes, as well as BC oxidation after periodate treatment, as shown by bands at 1726.2 cm-1 and 895 cm-1, respectively. The Potentiometric Titration shows the highest total negative charge of 1.07 mmol/g for 4CNF/4CMC, which is assigned to the presence of COO- within CMC polymers, and lowest (0.21 mmol/g) for BCox. The Contact Angle Goniometry data confirm the hydrophilicity of all membranes, and the angle increased from 0 ° (in pure BC) to 34.5 ° in CMC-rich and to 31.4 ° in BCox membranes due to the presence of CH2COO- and CHO groups, respectively. Confocal Fluorescent Microscopy (CFM) demonstrated the highest µ-roughness in 4CNF/4CMC, while Scanning Electron Microscopy (SEM) depicted diverse morphological features between the membranes, from ultrafine nanofiber networks (in BC and BCox) to larger fiber bundles connected within the polymer phase in CNF/CMC membranes. The adsorption experiment followed by UV-VIS spectroscopy, showed ~100% dye removal efficiency in both CNF/CMC-based membranes, while BC and BCox adsorbed only 24.3% and 23.6%, respectively, when anthraquinone dye was used. Azo dye was only adsorbed with an efficiency of 7-9% on CMC/CNF-based membranes, compared with 5.57% on BC and 7.33% on BCox membranes. The adsorption efficiency at equilibrium was highest for BC (1228 mg/g) and lowest for 7CNF/1CMC (419.24 mg/g) during anthraquinone dye adsorption. In the case of azo dye, the BCox was most effective, with 445.7 mg/g. Applicability of a pseudo second-order model was confirmed for both dyes and all membranes, except for BCox in combination with azo dye, showing the fastest adsorption rate in the case of the 7CNF/1CMC membrane.

14.
Chemosphere ; 239: 124768, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31518917

RESUMEN

There is a need for cheap but, efficient methods for the removal of precious metals from wastewaters, which are normally lost during mineral processing. Moreover, the disposal of yeast waste from brewing has been a problem in many parts of the world. In this study, the removal of Pt(IV) from aqueous solutions using the readily available bentonite clay functionalised with spent yeast from brewing was investigated. The maximum adsorption capacity of Pt(IV) with 100 mg yeast-functionalised bentonite at pH 2 within 90 min was 255 µg g-1 (98.5% efficiency) but, decreased as pH increased. The adsorption capacity of Pt(IV) was insignificantly (p > 0.05) affected by the presence of competing ions (Fe(III), Ca(II), Mg(II), K(I), Co(II), Ni(II), Hf(IV), Zn(II) and other platinum group metals (PGMs)). Moreover, most of these metals were significantly adsorbed along with Pt(IV). The indicative cost-benefit analysis showed that 1 kg of the yeast-functionalised bentonite can remove ∼700 g Pt(IV) in which a profit of more than USD20000 can be made. The bentonite functionalised with spent yeast from brewing has a potential to recover lost PGMs in wastewater. Since, this is a cheap process, the mining and other industries can make much profit from such recoveries.


Asunto(s)
Bentonita/química , Platino (Metal)/aislamiento & purificación , Saccharomyces cerevisiae/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Concentración de Iones de Hidrógeno , Residuos Industriales , Metales/química , Soluciones , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Agua/química
15.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-846168

RESUMEN

Objective: To prepare the cationic solid lipid nanoparticles (Que/mR150 SLNs) co-loaded with quercetin (Que) and microRNA-150 (mR150) and investigate the preparation process, then assess its in vitro release, cell uptake capacity and safety of ocular administration. Method: First, thin-film dispersion method was used to prepare quercetin-encapsulated cationic solid lipid nanoparticles (Que-SLNs), and the preparation process was optimized based on the particle size, PDI and encapsulation rate; Using electrostatic adsorption method to co-load mR150 in nanoparticles (Que/mR150 SLNs), and the adsorption efficiency of the miRNA by the nanoparticles was examined by agarose gel electrophoresis experiment; The in vitro release performance of quercetin in Que/mR150 SLNs was investigated; The effect of Que/mR150 SLNs on the proliferation of HUVEC of human umbilical vein endothelial cells was measured by MTT method, and fluorescence labeling was used to observe their uptake in HUVEC; And the irritancy of Que/mR150 SLNs to rabbit eyes was examined by pathological tissue sections of rabbit eyes. Result: After process optimization, the cationic nano Que-SLNs had good drug-loading, particle size distribution and stability. The appearance of the cationic nano-Que-SLNs was spherical, and it could be kept stable for two months. The quercetin encapsulation rate was (85.25 ± 1.29)%, the drug load was (1.67 ± 0.02)%, the average particle size was (110.00 ± 2.10) nm, and the Zeta potential is (53.2 ± 5.12) mV; The in vitro drug release results showed that the release of quercetin in the nanoparticles was slow, and the cumulative release amount within 48 h was about (80.69 ± 1.29)%; When the mass ratio of dioctadecyl dimethyl ammonium bromide to mR150 (DDAB/RNA) of different cationic materials was 6:1, the cationic solid lipid nanoparticles basically encapsulated mR150 completely with little effect on its particle size and potential. MTT experiments showed that blank nanometer mass concentration of 50-150 mg/L had no significant proliferation toxicity on HUVEC cells; Cell uptake experiments showed that Cy5 and coumarin-6 dual fluorescently labeled and co-loaded nanometers could effectively enter HUVEC cells; Pathological tissues of rabbit eyes showed that Que/mR150 SLNs had no obvious damage to the eyes. Conclusion: The preparation process of Que/mR150 SLNs solid lipid nanoparticles is stable and reliable, with good reproducibility, storage stability and good biological safety, which is conducive to the efficient delivery of quercetin and mR150 into HUVEC cells, which provides the ideas for the treatment of diseases related to angiogenesis

16.
World J Microbiol Biotechnol ; 35(1): 11, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30604023

RESUMEN

The aim of this study was to assess the immobilization pattern of microorganisms characterized by varying cell shapes and sizes (rod-shaped bacteria Lactobacillus delbruecki, spherical-shaped yeast Saccharomyces cerevisiae and hyphae forms of Yarrowia lipolytica) on bacterial cellulose of various material properties. The 'adsorption-incubation' method was used for the purposes of immobilization. The immobilization pattern included adsorption efficiency, ability of the immobilized cells to multiply within the carrier expressed as incubation efficiency and the degree of release of the immobilized cells from the carrier. The efficiency of adsorption and incubation was affected by the morphology of the immobilized cells and increased together with cellulose surface area. For smaller bacterial cells a higher level of loading was obtained on the same surface as compared to larger yeast cells. During incubation, the number of immobilized bacterial and yeast cells increased significantly in comparison to the number of cells adsorbed on the carrier during the adsorption step. Despite the morphological differences between the S. cerevisiae and Y. lipolytica cells, there were no statistically significant differences in the efficiency of adsorption and incubation. It was also revealed that the release ratio values obtained for L. delbruecki and S. cerevisiae increased along with cellulose surface area. Interestingly, Y. lipolytica cells in the pseudohyphae and hyphae forms penetrated deeply into the three-dimensional network of BC nanofibrils which prevented subsequent cell release. It was confirmed that carrier selection must be individually matched to the type of immobilized cells based especially on its porosity-related parameters.


Asunto(s)
Bacterias/química , Células Inmovilizadas/citología , Celulosa/química , Adsorción , Saccharomyces cerevisiae/citología , Yarrowia/citología
17.
J Environ Sci (China) ; 66: 358-367, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29628105

RESUMEN

Niobium oxide nanowire-deposited carbon fiber (CF) samples were prepared using a hydrothermal method with amorphous Nb2O5·nH2O as precursor. The physical properties of the samples were characterized by means of numerous techniques, including X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), UV-visible spectroscopy (UV-vis), N2 adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy. The efficiency for the removal of Cr(VI) was determined. Parameters such as pH value and initial Cr(VI) concentration could influence the Cr(VI) removal efficiency or adsorption capacity of the Nb2O5/carbon fiber sample obtained after hydrothermal treatment at 160°C for 14hr. The maximal Cr(VI) adsorption capacity of the Nb2O5 nanowire/CF sample was 115mg/g. This Nb2O5/CF sample also showed excellent photocatalytic activity and stability for the reduction of Cr(VI) under UV-light irradiation: the Cr(VI) removal efficiency reached 99.9% after UV-light irradiation for 1hr and there was no significant decrease in photocatalytic performance after the use of the sample for 10 repeated cycles. Such excellent Cr(VI) adsorption capacity and photocatalytic performance was related to its high surface area, abundant surface hydroxyl groups, and good UV-light absorption ability.


Asunto(s)
Carbono/química , Cromo/química , Nanocables/química , Niobio/química , Óxidos/química , Adsorción , Fibra de Carbono , Modelos Químicos , Procesos Fotoquímicos , Contaminantes Químicos del Agua
18.
J Environ Sci (China) ; 60: 78-83, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29031449

RESUMEN

Surface junctions between BiOBr and BiVO4 were synthesized. The BiOBr/BiVO4 with 1wt.% of BiOBr exhibited the highest photocatalytic activity in the degradation of RhB under visible-light irradiation. It was found that the highly efficient adsorption of RhB molecules via the electrostatic attraction between Br- and cationic N(Et)2 group played a key role for the high photocatalytic activities of BiOBr/BiVO4. This efficient adsorption promoted the N-deethylation of RhB and thus accelerated the photocatalytic degradation of RhB. Moreover, the metal-to-metal charge transfer (MMCT) mechanism was proposed, which revealed the concrete path paved with Bi-O-Bi chains for the carrier migration in BiOBr/BiVO4. The interaction between photoexcited RhB* and the Bi3+ in BiVO4 provided the driving force for the migration of photo-generated carriers along the Bi-O-Bi chains. This work has not only demonstrated the important role of efficient adsorption in the photocatalytic degradation of organic contaminants, but also developed a facile strategy to improve the efficiency of photocatalysts.


Asunto(s)
Bismuto/química , Técnicas de Química Sintética/métodos , Modelos Químicos , Procesos Fotoquímicos , Vanadatos/química , Adsorción , Luz , Contaminantes Químicos del Agua
19.
Luminescence ; 32(1): 62-70, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27321808

RESUMEN

Here, we report a simple, green and economic process for the synthesis of highly fluorescent carbon nanoparticles (CPs) through low-temperature carbonization of a fruit waste, Citrus sinensis peel. This approach allows the large-scale production of aqueous CPs dispersions without any additives and post-treatment processes. The as-prepared CPs were of small particle size, exhibited bright blue fluorescence under UV irradiation (λmax  = 365 nm) with excellent colloidal stability in water. The chemical composition, structure and morphology of the as-prepared CPs were analyzed using various spectroscopic techniques such as X-ray diffraction, transmission electron microscopy and raman spectroscopy. The formed CPs were turbostratic in nature, with a large number of functional groups on the surface. We explored the adsorption characteristics of the formed CPs for wastewater treatment. Because of the negative surface of the CPs, as evident from the zeta value, it is possible to use them for selective adsorption of the cationic dye methylene blue from a mixture of dyes. The equilibrium adsorption isotherm revealed that the Langmuir model better describes the adsorption process than the Freundlich model. As-prepared CPs rapidly adsorbed ~84% of the methylene blue within 1 min and can be regenerated and used repeatedly. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Carbono/química , Citrus sinensis/química , Fluorescencia , Azul de Metileno/química , Nanopartículas/química , Contaminantes Químicos del Agua/química , Adsorción , Tamaño de la Partícula , Propiedades de Superficie
20.
Chemosphere ; 154: 293-299, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27060637

RESUMEN

A sorbent trap that utilizes activated carbon (AC) as the solid trapping medium is a new technology for measuring total mercury (Hg) emissions from combustion facilities. In this study, sorbent trap technology was further developed, improved and evaluated at the laboratory scale. AC was impregnated with 5% aqua regia to enhance its Hg adsorption capacity. Sorbent traps spiked with an Hg standard solution were found to be reproducibly prepared and highly stable. The effect of the Hg concentration on the spiking efficiency was further investigated. The adsorption of elemental and oxidized Hg by the sorbent trap was studied under various experimental conditions (temperature, flow rate and inlet Hg concentration). The Hg concentration of the flue gas effluent from the sorbent trap was measured. In addition, the concentration of Hg adsorbed on the AC was determined by digesting the used AC with an acid according to US EPA method 3052 and then analyzing it with cold vapor atomic absorption spectrometry. Furthermore, the gas-phase Hg emissions from a combustion source were measured using the sorbent trap according to US EPA method 30B. The results showed that the sorbent trap could be used for Hg concentrations between 10.0 and 40.0 µg m(-3) and flow rates between 0.5 and 1.0 lpm with adsorption efficiencies greater than 90%.


Asunto(s)
Contaminantes Atmosféricos/análisis , Carbón Orgánico/química , Gases/química , Mercurio/análisis , Adsorción , Oxidación-Reducción , Espectrofotometría Atómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA