Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Sci Rep ; 14(1): 14710, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926592

RESUMEN

Heterozygous de novo mutations in the Activity-Dependent Neuroprotective Homeobox (ADNP) gene underlie Helsmoortel-Van der Aa syndrome (HVDAS). Most of these mutations are situated in the last exon and we previously demonstrated escape from nonsense-mediated decay by detecting mutant ADNP mRNA in patient blood. In this study, wild-type and ADNP mutants are investigated at the protein level and therefore optimal detection of the protein is required. Detection of ADNP by means of western blotting has been ambiguous with reported antibodies resulting in non-specific bands without unique ADNP signal. Validation of an N-terminal ADNP antibody (Aviva Systems) using a blocking peptide competition assay allowed to differentiate between specific and non-specific signals in different sample materials, resulting in a unique band signal around 150 kDa for ADNP, above its theoretical molecular weight of 124 kDa. Detection with different C-terminal antibodies confirmed the signals at an observed molecular weight of 150 kDa. Our antibody panel was subsequently tested by immunoblotting, comparing parental and homozygous CRISPR/Cas9 endonuclease-mediated Adnp knockout cell lines and showed disappearance of the 150 kDa signal, indicative for intact ADNP. By means of both a GFPSpark and Flag-tag N-terminally fused to a human ADNP expression vector, we detected wild-type ADNP together with mutant forms after introduction of patient mutations in E. coli expression systems by site-directed mutagenesis. Furthermore, we were also able to visualize endogenous ADNP with our C-terminal antibody panel in heterozygous cell lines carrying ADNP patient mutations, while the truncated ADNP mutants could only be detected with epitope-tag-specific antibodies, suggesting that addition of an epitope-tag possibly helps stabilizing the protein. However, western blotting of patient-derived hiPSCs, immortalized lymphoblastoid cell lines and post-mortem patient brain material failed to detect a native mutant ADNP protein. In addition, an N-terminal immunoprecipitation-competent ADNP antibody enriched truncating mutants in overexpression lysates, whereas implementation of the same method failed to enrich a possible native mutant protein in immortalized patient-derived lymphoblastoid cell lines. This study aims to shape awareness for critical assessment of mutant ADNP protein analysis in Helsmoortel-Van der Aa syndrome.


Asunto(s)
Proteínas de Homeodominio , Proteínas del Tejido Nervioso , Humanos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Mutación , Células HEK293 , Trastorno del Espectro Autista , Cardiopatías , Facies , Trastornos del Neurodesarrollo
2.
Acta Neuropathol Commun ; 12(1): 62, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637827

RESUMEN

BACKGROUND: Helsmoortel-Van der Aa syndrome is a neurodevelopmental disorder in which patients present with autism, intellectual disability, and frequent extra-neurological features such as feeding and gastrointestinal problems, visual impairments, and cardiac abnormalities. All patients exhibit heterozygous de novo nonsense or frameshift stop mutations in the Activity-Dependent Neuroprotective Protein (ADNP) gene, accounting for a prevalence of 0.2% of all autism cases worldwide. ADNP fulfills an essential chromatin remodeling function during brain development. In this study, we investigated the cerebellum of a died 6-year-old male patient with the c.1676dupA/p.His559Glnfs*3 ADNP mutation. RESULTS: The clinical presentation of the patient was representative of the Helsmoortel-Van der Aa syndrome. During his lifespan, he underwent two liver transplantations after which the child died because of multiple organ failure. An autopsy was performed, and various tissue samples were taken for further analysis. We performed a molecular characterization of the cerebellum, a brain region involved in motor coordination, known for its highest ADNP expression and compared it to an age-matched control subject. Importantly, epigenome-wide analysis of the ADNP cerebellum identified CpG methylation differences and expression of multiple pathways causing neurodevelopmental delay. Interestingly, transcription factor motif enrichment analysis of differentially methylated genes showed that the ADNP binding motif was the most significantly enriched. RNA sequencing of the autopsy brain further identified downregulation of the WNT signaling pathway and autophagy defects as possible causes of neurodevelopmental delay. Ultimately, label-free quantification mass spectrometry identified differentially expressed proteins involved in mitochondrial stress and sirtuin signaling pathways amongst others. Protein-protein interaction analysis further revealed a network including chromatin remodelers (ADNP, SMARCC2, HDAC2 and YY1), autophagy-related proteins (LAMP1, BECN1 and LC3) as well as a key histone deacetylating enzyme SIRT1, involved in mitochondrial energy metabolism. The protein interaction of ADNP with SIRT1 was further biochemically validated through the microtubule-end binding proteins EB1/EB3 by direct co-immunoprecipitation in mouse cerebellum, suggesting important mito-epigenetic crosstalk between chromatin remodeling and mitochondrial energy metabolism linked to autophagy stress responses. This is further supported by mitochondrial activity assays and stainings in patient-derived fibroblasts which suggest mitochondrial dysfunctions in the ADNP deficient human brain. CONCLUSION: This study forms the baseline clinical and molecular characterization of an ADNP autopsy cerebellum, providing novel insights in the disease mechanisms of the Helsmoortel-Van der Aa syndrome. By combining multi-omic and biochemical approaches, we identified a novel SIRT1-EB1/EB3-ADNP protein complex which may contribute to autophagic flux alterations and impaired mitochondrial metabolism in the Helsmoortel-Van der Aa syndrome and holds promise as a new therapeutic target.


Asunto(s)
Trastorno Autístico , Discapacidad Intelectual , Masculino , Niño , Animales , Ratones , Humanos , Discapacidad Intelectual/genética , Trastorno Autístico/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo , Genes Mitocondriales , Proteínas de Homeodominio/genética , Cerebelo/metabolismo , Autopsia , Metilación , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
J Mol Neurosci ; 74(1): 15, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38282129

RESUMEN

Activity-dependent neuroprotective protein (ADNP) is essential for neurodevelopment and de novo mutations in ADNP cause the ADNP syndrome. From brain pathologies point of view, tauopathy has been demonstrated at a young age, implying stunted development coupled with early/accelerated neurodegeneration. Given potential genotype-phenotype differences and age-dependency, we have assessed here a cohort of 15 individuals (1-27-year-old), using 1-3 longitudinal parent (caretaker) interview/s (Vineland 3 questionnaire) over several years. Our results indicated developmental delays, or even developmental arrests, coupled with potential spurts of development at early ages. Severe outcomes correlated with the truncating high impact mutation, in other words, the remaining mutated protein length as well as with the tested individual age, corroborating the hypothesis of developmental delays coupled with accelerated aging. A significant correlation was noted between mutated protein length and communication, implying a high impact of ADNP on communicative skills. Additionally, correlations were discovered between the two previously described epi-genetic signatures in ADNP emphasizing aberrant acquisition of motor behaviors, with truncating mutations around the nuclear localization signal being mostly affected. Finally, all individuals seem to acquire an age equivalent of 1-6 years, requiring disease modification treatment, such as the ADNP-derived drug candidate, NAP (davunetide), which has recently shown efficacy in women suffering from the neurodegenerative disorder, progressive supranuclear palsy (PSP), a late-onset tauopathy.


Asunto(s)
Proteínas de Homeodominio , Tauopatías , Masculino , Humanos , Femenino , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Mutación , Síndrome , Proteínas de Homeodominio/genética , Fenotipo , Genotipo , Proteínas del Tejido Nervioso/genética
4.
Cells ; 12(18)2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37759476

RESUMEN

(1) Background: Recently, we showed aberrant nuclear/cytoplasmic boundaries/activity-dependent neuroprotective protein (ADNP) distribution in ADNP-mutated cells. This malformation was corrected upon neuronal differentiation by the ADNP-derived fragment drug candidate NAP (davunetide). Here, we investigated the mechanism of NAP nuclear protection. (2) Methods: CRISPR/Cas9 DNA-editing established N1E-115 neuroblastoma cell lines that express two different green fluorescent proteins (GFPs)-labeled mutated ADNP variants (p.Tyr718* and p.Ser403*). Cells were exposed to NAP conjugated to Cy5, followed by live imaging. Cells were further characterized using quantitative morphology/immunocytochemistry/RNA and protein quantifications. (3) Results: NAP rapidly distributed in the cytoplasm and was also seen in the nucleus. Furthermore, reduced microtubule content was observed in the ADNP-mutated cell lines. In parallel, disrupting microtubules by zinc or nocodazole intoxication mimicked ADNP mutation phenotypes and resulted in aberrant nuclear-cytoplasmic boundaries, which were rapidly corrected by NAP treatment. No NAP effects were noted on ADNP levels. Ketamine, used as a control, was ineffective, but both NAP and ketamine exhibited direct interactions with ADNP, as observed via in silico docking. (4) Conclusions: Through a microtubule-linked mechanism, NAP rapidly localized to the cytoplasmic and nuclear compartments, ameliorating mutated ADNP-related deficiencies. These novel findings explain previously published gene expression results and broaden NAP (davunetide) utilization in research and clinical development.


Asunto(s)
Ketamina , Fármacos Neuroprotectores , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Proteínas tau/metabolismo , Núcleo Celular/metabolismo
5.
Cells ; 11(19)2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36230962

RESUMEN

(1) Background: Activity-dependent neuroprotective protein (ADNP) is essential for neuronal structure and function. Multiple de novo pathological mutations in ADNP cause the autistic ADNP syndrome, and they have been further suggested to affect Alzheimer's disease progression in a somatic form. Here, we asked if different ADNP mutations produce specific neuronal-like phenotypes toward better understanding and personalized medicine. (2) Methods: We employed CRISPR/Cas9 genome editing in N1E-115 neuroblastoma cells to form neuron-like cell lines expressing ADNP mutant proteins conjugated to GFP. These new cell lines were characterized by quantitative morphology, immunocytochemistry and live cell imaging. (3) Results: Our novel cell lines, constitutively expressing GFP-ADNP p.Pro403 (p.Ser404* human orthologue) and GFP-ADNP p.Tyr718* (p.Tyr719* human orthologue), revealed new and distinct phenotypes. Increased neurite numbers (day 1, in culture) and increased neurite lengths upon differentiation (day 7, in culture) were linked with p.Pro403*. In contrast, p.Tyr718* decreased cell numbers (day 1). These discrete phenotypes were associated with an increased expression of both mutant proteins in the cytoplasm. Reduced nuclear/cytoplasmic boundaries were observed in the p.Tyr718* ADNP-mutant line, with this malformation being corrected by the ADNP-derived fragment drug candidate NAP. (4) Conclusions: Distinct impairments characterize different ADNP mutants and reveal aberrant cytoplasmic-nuclear crosstalk.


Asunto(s)
Trastorno Autístico , Proteínas del Tejido Nervioso , Trastorno Autístico/genética , Citoplasma/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas Mutantes , Proteínas del Tejido Nervioso/metabolismo
8.
Prog Mol Biol Transl Sci ; 177: 65-90, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33453943

RESUMEN

The 1102-amino-acid activity-dependent neuroprotective protein (ADNP) was originally discovered by expression cloning through the immunological identification of its 8-amino-acid sequence NAPVSIPQ (NAP), constituting the smallest active neuroprotective fragment of the protein. ADNP expression is essential for brain formation and cognitive function and is dysregulated in a variety of neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and schizophrenia). ADNP has been found to be mutated in autism, with an estimated prevalence of 0.17% (together, these autism cases now constitute ADNP syndrome cases) and our recent results showed somatic mutations in ADNP in Alzheimer's disease brains correlating with tauopathy. Furthermore, Adnp haploinsufficiency in mice causes an age-dependent reduction in cognitive functions coupled with tauopathy-like features such as an increased formation of tangle-like structures, defective axonal transport, and Tau hyperphosphorylation. ADNP and its derived peptides, NAP and SKIP, directly interact with end-binding proteins (EBs), which decorate plus-tips of the growing axonal cytoskeleton-microtubules (MTs). Functionally, NAP and SKIP are neuroprotective and stimulate axonal transport. Clinical trials have suggested the potential efficacy of NAP (davunetide, CP201) for improving cognitive performance/functional activities of daily living in amnestic mild cognitive impairment (aMCI) and schizophrenia patients, respectively. However, NAP was not found to be an effective treatment (though well-tolerated) for progressive supranuclear palsy (PSP) patients. Here we review the molecular mechanism of NAP activity on MTs and how NAP modulates the MT-Tau-EBs crosstalk. We offer a molecular explanation for the different protective potency of NAP in selected tauopathies (aMCI vs. PSP) expressing different ratios/pathologies of the alternatively spliced Tau mRNA and its resulting protein (aMCI expressing similar quantities of the dynamic Tau 3-MT binding isoform (Tau3R) and the Tau 4-MT binding isoform (Tau4R) and PSP enriched in Tau4R pathology). We reveal the direct effect of truncated ADNPs (resulting from de novo autism and newly discovered Alzheimer's disease-related somatic mutations) on MT dynamics. We show that the peptide SKIP affects MT dynamics and MT-Tau association. Since MT impairment is linked with neurodegenerative and neurodevelopmental conditions, the current study implicates a paucity/dysregulation of MT-interacting endogenous proteins, like ADNP, as a contributing mechanism and provides hope for NAP and SKIP as MT-modulating drug candidates.


Asunto(s)
Tauopatías , Actividades Cotidianas , Animales , Proteínas Portadoras , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo
9.
J Mol Neurosci ; 70(11): 1671-1683, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32926339

RESUMEN

The activity-dependent neuroprotective protein (ADNP) syndrome is an autistic-like disorder, instigated by mutations in ADNP. This syndrome is characterized by developmental delays, impairments in speech, motor function, abnormal hearing, and intellectual disabilities. In the Adnp-haploinsufficient mouse model, many of these impediments are evident, appearing in a sex-dependent manner. In zebra finch songbird (ZF; Taeniopygia guttata), an animal model used for song/language studies, ADNP mRNA most robust expression is observed in the cerebrum of young males, potentially corroborating with male ZF exclusive singing behavior and developed cerebral song system. Herein, we report a similar sex-dependent ADNP expression profile, with the highest expression in the cerebrum (qRT-PCR) in the brain of another songbird, the domesticated canary (Serinus canaria domestica). Additional analyses for the mRNA transcripts of the ADNP regulator, vasoactive intestinal peptide (VIP), sister gene ADNP2, and speech-related Forkhead box protein P2 (FoxP2) revealed multiple sex and brain region-dependent positive correlations between the genes (including ADNP). Parallel transcript expression patterns for FoxP2 and VIP were observed alongside specific FoxP2 increase in males compared with females as well as VIP/ADNP2 correlations. In spatial view, a sexually independent extensive form of expression was found for ADNP in the canary cerebrum (RNA in situ hybridization). The songbird cerebral mesopallium area stood out as a potentially high-expressing ADNP tissue, further strengthening the association of ADNP with sense integration and auditory memory formation, previously implicated in mouse and human.


Asunto(s)
Trastorno Autístico/genética , Encéfalo/metabolismo , Canarios/genética , Vocalización Animal , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Encéfalo/fisiología , Canarios/fisiología , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Factores Sexuales , Péptido Intestinal Vasoactivo/genética , Péptido Intestinal Vasoactivo/metabolismo
10.
Microorganisms ; 8(6)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466564

RESUMEN

Human infections with the food-borne zoonotic pathogen Campylobacter jejuni are progressively rising and constitute serious global public health and socioeconomic burdens. Hence, application of compounds with disease-alleviating properties are required to combat campylobacteriosis and post-infectious sequelae. In our preclinical intervention study applying an acute C. jejuni induced enterocolitis model, we surveyed the anti-pathogenic and immune-modulatory effects of the octapeptide NAP which is well-known for its neuroprotective and anti-inflammatory properties. Therefore, secondary abiotic IL-10-/- mice were perorally infected with C. jejuni and intraperitoneally treated with synthetic NAP from day 2 until day 5 post-infection. NAP-treatment did not affect gastrointestinal C. jejuni colonization but could alleviate clinical signs of infection that was accompanied by less pronounced apoptosis of colonic epithelial cells and enhancement of cell regenerative measures on day 6 post-infection. Moreover, NAP-treatment resulted in less distinct innate and adaptive pro-inflammatory immune responses that were not restricted to the intestinal tract but could also be observed in extra-intestinal and even systemic compartments. NAP-treatment further resulted in less frequent translocation of viable pathogens from the intestinal tract to extra-intestinal including systemic tissue sites. For the first time, we here provide evidence that NAP application constitutes a promising option to combat acute campylobacteriosis.

11.
J Neural Transm (Vienna) ; 127(2): 251-263, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32072336

RESUMEN

Activity-dependent neuroprotective protein (ADNP) and its protein snippet NAP (drug candidate CP201) regulate synapse formation and cognitive as well as behavioral functions, in part, through microtubule interaction. Given potential interactions between the microbiome and brain function, we now investigated the potential effects of the ADNP-deficient genotype, mimicking the ADNP syndrome on microbiota composition in the Adnp+/- mouse model. We have discovered a surprising robust sexually dichotomized Adnp genotype effect and correction by NAP (CP201) as follows. Most of the commensal bacterial microbiota tested were affected by the Adnp genotype and corrected by NAP treatment in a male sex-dependent manner. The following list includes all the bacterial groups tested-labeled in bold are male Adnp-genotype increased and corrected (decreased) by NAP. (1) Eubacteriaceae (EubV3), (2) Enterobacteriaceae (Entero), (3) Enterococcus genus (gEncocc), (4) Lactobacillus group (Lacto), (5) Bifidobacterium genus (BIF), (6) Bacteroides/Prevotella species (Bac), (7) Clostridium coccoides group (Coer), (8) Clostridium leptum group (Cluster IV, sgClep), and (9) Mouse intestinal Bacteroides (MIB). No similarities were found between males and females regarding sex- and genotype-dependent microbiota distributions. Furthermore, a female Adnp+/- genotype associated decrease (contrasting male increase) was observed in the Lactobacillus group (Lacto). Significant correlations were discovered between specific bacterial group loads and open-field behavior as well as social recognition behaviors. In summary, we discovered ADNP deficiency associated changes in commensal gut microbiota compositions, a sex-dependent biomarker for the ADNP syndrome and beyond. Strikingly, we discovered rapidly detected NAP (CP201) treatment-dependent biomarkers within the gut microbiota.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Conducta Animal , Microbioma Gastrointestinal , Naftoquinonas/farmacología , Proteínas del Tejido Nervioso/deficiencia , Animales , Trastorno del Espectro Autista/microbiología , Trastorno del Espectro Autista/fisiopatología , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Genotipo , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Transgénicos , Naftoquinonas/administración & dosificación , Naftoquinonas/farmacocinética , Proteínas del Tejido Nervioso/genética , Conducta Social , Cognición Social , Síndrome
12.
J Neurosci Methods ; 323: 119-124, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31150696

RESUMEN

Focusing on microtubule heterogeneity and brain specificity allowed for initial discoveries of multiple tubulin isotypes four decades ago. Methods evolved from using radioactive labelling and single cell cultures to monoclonal antibodies recognizing discrete forms of tubulin in single neurons. With the advantage of molecular cloning and fluorescent protein tagging, essential components for microtubule dynamics/stability and function were identified, including activity-dependent neuroprotective protein, ADNP and its peptide snippet, NAP (drug candidate, davunetide/CP201). ADNP/NAP through the SxIP motif interact with microtubule end binding proteins EB1 and EB3 to increase microtubule dynamics, axonal transport and dendritic spine formation. Recent transcriptomic analysis of the young mouse brain at the single cell level enabled characterization of cell-type specific cytoskeleton related gene signatures (e.g., tubulin transcripts, microtubule-associated protein Tau, Mapt and microtubule end binding protein, EB3, Mapre3) at unprecedented detail. Here, we review these findings with a methodological perspective to highlight how cutting-edge techniques have allowed us to disentangle cytoskeleton dynamics in health and disease.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Focalización Isoeléctrica , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , RNA-Seq , Análisis de la Célula Individual , Tubulina (Proteína)/metabolismo , Animales
13.
J Food Drug Anal ; 27(2): 551-564, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30987727

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia in late life. It is difficult to precisely diagnose AD at early stages, making biomarker search essential for further developments. The objective of this study was to identify protein biomarkers associated with aluminum ions toxicity (AD-like toxicity) in a human neuroblastoma cell model, SH-SY5Y and assess potential prevention by NAP (NAPVSIPQ). Complete proteomic techniques were implemented. Four proteins were identified as up-regulated with aluminum ion treatment, CBP80/20-dependent translation initiation factor (CTIF), Early endosome antigen 1 (EEA1), Leucine-rich repeat neuronal protein 4 (LRRN4) and Phosphatidylinositol 3-kinase regulatory subunit beta (PI3KR2). Of these four proteins, EEA1 and PI3KR2 were down-regulated after NAP-induced neuroprotective activity in neuroblastoma cells. Thus, aluminum ions may increase the risk for neurotoxicity in AD, and the use of NAP is suggested as a treatment to provide additional protection against the effects of aluminum ions, via EEA1 and PI3KR2, associated with sorting and processing of the AD amyloid precursor protein (APP) through the endosomal system.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Aluminio/toxicidad , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/patología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Iones/toxicidad , Fármacos Neuroprotectores/química , Neurotoxinas/toxicidad , Oxidación-Reducción , Fragmentos de Péptidos/química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
14.
Neurochem Res ; 44(6): 1494-1507, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30659505

RESUMEN

Autism is a wide spread neurodevelopmental disorder with growing morbidity rates, affecting more boys than girls worldwide. Activity-dependent neuroprotective protein (ADNP) was recently recognized as a leading gene accounted for 0.17% of autism spectrum disorder (ASD) cases globally. Respectively, mutations in the human ADNP gene (ADNP syndrome), cause multi-system body dysfunctions with apparent ASD-related traits, commencing as early as childhood. The Adnp haploinsufficient (Adnp+/-) mouse model was researched before in relations to Alzheimer's disease and autism. Adnp+/- mice suffer from deficient social memory, vocal and motor impediments, irregular tooth eruption and short stature, all of which corresponds with reported phenotypes in patients with the ADNP syndrome. Recently, a more elaborated description of the ADNP syndrome was published, presenting impediments such as hearing disabilities in > 10% of the studied children. Irregular auditory brainstem response (ABR) has been connected to ASD-related cases and has been suggested as a potential hallmark for autism, allowing diagnosis of ASD risk and early intervention. Herein, we present detriment hearing in the Adnp+/- mice with atypical ABR and significant protein expression irregularities that coincides with ASD and hearing loss studies in the brain.


Asunto(s)
Trastorno del Espectro Autista/complicaciones , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Pérdida Auditiva/etiología , Proteínas de Homeodominio/genética , Proteínas del Tejido Nervioso/genética , Animales , Corteza Auditiva , Trastorno del Espectro Autista/genética , Colina O-Acetiltransferasa/metabolismo , Femenino , Glutamato Descarboxilasa/metabolismo , Células Ciliadas Auditivas/citología , Pérdida Auditiva/genética , Masculino , Ratones , Mutación
15.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-793195

RESUMEN

@# Objective:To analyze the expression and clinic significance of activity-dependent neuroprotective protein (ADNP) in bladder urothelial carcinoma. Methods: A total of 28 pairs of bladder cancer tissues and corresponding adjacent normal tissuesthat surgically resected at the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University from June 1, 2019 to July 15, 2019 were collected for this study. The mRNAexpression ofADNP in 20 pairs of tissue samples was detected by qPCR, and the protein expressionin the other 8 pairs was detected by WB. Mean while, the clinicopathological data of patients with bladder urothelial carcinoma treated in our hospital from January 1, 2005 to December 31, 2007 were retrospectively analyzed; and the expression of ADNP in the corresponding paraffin tumor sections were determined with immunohistochemical staining, and normal bladder tissue sections from patients who underwent surgery for other bladder diseases during the same period were collected for comparison. Chi-square test was used to analyze the correlation between ADNP expression and different clinicopathological features, Kaplan-Meier method was used for survival analysis, and Cox risk regression model was used forunivariate and multivariate analysis of prognosticfactors. Results: ThetranscriptionalandtranslationallevelsofADNPincancertissues were higher than those in adjacent normal tissues (all P<0.05), and the expression level ofADNP was correlated with the histological grade, clinical stages and survival status of patients with bladder cancer (P<0.05). Of all the 221 patients included in the study, 32 patients lost to follow-up,and patients with high ADNP expression had

16.
Curr Pharm Des ; 24(33): 3868-3877, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30417779

RESUMEN

BACKGROUND: The most common form of dementia is Alzheimer's disease (AD), which is characterized, in part, by the accumulation of neurofibrillary tangles (NFT), followed by synaptic and neuronal loss. NFTs are mainly composed of aggregated hyperphosphorylated Tau. It has been demonstrated that pathological concentrations of zinc induce 1] activation of a major Tau kinase - the glycogen synthase kinase-3ß (GSK-3ß), and 2] promote Tau aggregation and toxicity. Activity-dependent neuroprotective protein (ADNP) and its derived peptide NAP exhibit neuroprotective properties against a variety of toxic insults, including toxic zinc concentrations. ADNP deficiency results in increased content of the GSK-3ß active form, Tau hyperphosphorylation and NFTlike structure formation, all of which have been prevented by NAP treatment. Our previous experiments showed that NAP enhanced Tau-microtubule association in the face of zinc toxicity. Interestingly, NAP protection against zinc toxicity was rescued by Tau overexpression in NIH-3T3 fibroblast cells, which naturally does not express high amounts of Tau. OBJECTIVES AND METHODS: Pheochromocytoma cells (PC12), exposed to high concentration of zinc (400µM), were used to determine the protective effect of NAP on Tau phosphorylation and two Tau kinases (Fyn and GSK-3ß). Knockdown of Tau expression in PC12 cells by RNA silencing was used to determine Tau's requirement for the NAP protective activity under zinc intoxication. RESULTS: NAP treatment attenuated Tau hyperphosphorylation and GSK-3ß increased activity caused by zinc intoxication. Furthermore, Tau knockdown completely abolished NAP protective activity. CONCLUSION: These results together with the previous findings strongly corroborated Tau's involvement in NAP/ADNP cellular activity.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Péptidos/farmacología , Sustancias Protectoras/farmacología , Proteínas tau/antagonistas & inhibidores , Animales , Supervivencia Celular/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células PC12 , Fosforilación/efectos de los fármacos , Ratas , Proteínas tau/metabolismo
17.
Eur J Microbiol Immunol (Bp) ; 8(2): 34-40, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29997909

RESUMEN

The octapeptide NAP is well known for its neuroprotective properties. We here investigated whether NAP treatment could alleviate pro-inflammatory immune responses during experimental subacute ileitis. To address this, mice with a human gut microbiota were perorally infected with one cyst of Toxoplasma gondii (day 0) and subjected to intraperitoneal synthetic NAP treatment from day 1 until day 8 postinfection (p.i.). Whereas placebo (PLC) control animals displayed subacute ileitis at day 9 p.i., NAP-treated mice exhibited less pronounced pro-inflammatory immune responses as indicated by lower numbers of intestinal mucosal T and B lymphocytes and lower interferon (IFN)-γ concentrations in mesenteric lymph nodes. The NAP-induced anti-inflammatory effects were not restricted to the intestinal tract but could also be observed in extra-intestinal including systemic compartments, given that pro-inflammatory cytokines were lower in liver, kidney, and lung following NAP as compared to PLC application, whereas at day 9 p.i., colonic and serum interleukin (IL)-10 concentrations were higher in the former as compared to the latter. Remarkably, probiotic commensal bifidobacterial loads were higher in the ileal lumen of NAP as compared to PLC-treated mice with ileitis. Our findings thus further support that NAP might be regarded as future treatment option directed against intestinal inflammation.

18.
Peptides ; 101: 1-9, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29288684

RESUMEN

The octapeptide NAP has been shown to exert neuroprotective properties and reduce neuro-inflammatory responses. The aim of the present study was to investigate if NAP provides anti-inflammatory effects in acute murine colitis. To address this, C57BL/6 j mice were challenged with 3.5% dextran sulfate sodium from day 0 until day 6 to induce colitis, either treated intraperitoneally with NAP or placebo (NaCl 0.9%) from day 1 until day 6 post-induction (p.i.) and subjected to in depth macroscopic, microscopic and immunological evaluations. Whereas NAP application did not alleviate macroscopic (i.e. clinical) sequelae of colitis, lower numbers of apoptotic, but higher counts of proliferating/regenerating colonic epithelial cells could be observed in NAP as compared to placebo treated mice at day 7 p.i. Furthermore, lower numbers of adaptive immune cells such as T lymphocytes and regulatory T cells were abundant in the colonic mucosa and lamina propria upon NAP versus placebo treatment that were accompanied by less colonic secretion of pro-inflammatory mediators including IFN-γ and nitric oxide at day 7 p.i. In mesenteric lymph nodes, pro-inflammatory IFN-γ, TNF and IL-6 concentrations were increased in placebo, but not NAP treated mice at day 7 p.i., whereas interestingly, elevated anti-inflammatory IL-10 levels could be observed in NAP treated mice only. The assessed anti-inflammatory properties of NAP were not restricted to the intestinal tract, given that in extra-intestinal compartments such as the kidneys, IFN-γ levels increased in placebo, but not NAP treated mice upon colitis induction. NAP induced effects were accompanied by distinct changes in intestinal microbiota composition, given that colonic luminal loads of bifidobacteria, regarded as anti-inflammatory, "health-promoting" commensal species, were two orders of magnitude higher in NAP as compared to placebo treated mice and even naive controls. In conclusion, NAP alleviates intestinal and extra-intestinal pro-inflammatory sequelae of acute experimental colitis and may provide novel treatment options of intestinal inflammatory diseases in humans.


Asunto(s)
Colitis/tratamiento farmacológico , Oligopéptidos/farmacología , Enfermedad Aguda , Animales , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones , Distribución Aleatoria
19.
J Alzheimers Dis ; 50(1): 249-60, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26639975

RESUMEN

Biomarkers for Alzheimer's disease (AD) are vital for disease detection in the clinical setting. Discovered in our laboratory, activity-dependent neuroprotective protein (ADNP) is essential for brain formation and linked to cognitive functions. Here, we revealed that blood borne expression of ADNP and its paralog ADNP2 is correlated with premorbid intelligence, AD pathology, and clinical stage. Age adjustment showed significant associations between: 1) higher premorbid intelligence and greater serum ADNP, and 2) greater cortical amyloid and lower ADNP and ADNP2 mRNAs. Significant increases in ADNP mRNA levels were observed in patients ranging from mild cognitive impairment (MCI) to AD dementia. ADNP2 transcripts showed high correlation with ADNP transcripts, especially in AD dementia lymphocytes. ADNP plasma/serum and lymphocyte mRNA levels discriminated well between cognitively normal elderly, MCI, and AD dementia participants. Measuring ADNP blood-borne levels could bring us a step closer to effectively screening and tracking AD.


Asunto(s)
Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/fisiopatología , Proteínas de Homeodominio/sangre , Inteligencia/fisiología , Proteínas del Tejido Nervioso/sangre , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/metabolismo , Distribución de Chi-Cuadrado , Disfunción Cognitiva/sangre , Estudios de Cohortes , Femenino , Humanos , Vida Independiente , Masculino , Escala del Estado Mental , Persona de Mediana Edad , Fragmentos de Péptidos/líquido cefalorraquídeo , ARN Mensajero/metabolismo , Proteínas tau/líquido cefalorraquídeo
20.
J Mol Neurosci ; 57(2): 304-13, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26315608

RESUMEN

Oligodendrocytes, the myelin-forming cells of the central nervous system, play important roles in brain development and maintenance. Activity-dependent neuroprotective protein (ADNP), an early marker essential for brain formation, interacts with microtubule end-binding proteins (EB1, EB2, and EB3). EB1 and EB3 are highly expressed in neurons (axons and dendritic spines, respectively) and EB1 enhancement of neurite outgrowth is attenuated by EB2. ADNP/EB presence in oligodendrocytes has not been studied so far. Here, we measured messenger RNA (mRNA) levels of ADNP and EB1-EB3 in rat brain oligodendrocytes during culture maturation and in rat brains during development (1, 35, and 75 days) in comparison with rat astrocytes, dorsal root ganglion (DRG) neurons, and the oligodendroglia cell lines (OLN-93 cell line, not expressing the microtubule-associated protein (MAP) tau, and OLN-93 cells stably transfected to express various forms of tau). Results showed that all transcripts studied were expressed in oligodendrocytes. ADNP and EB2 mRNA transcript content peaked at the time of oligodendrocyte maturation (5 days in vitro) and was highest in newborn rat brains compared with mature brains. ADNP2 (the only family member of ADNP), and EB1, although expressed in lower quantities, essentially paralleled ADNP and EB2 expression patterns, respectively. EB3 mRNA, peaking upon oligodendrocyte maturation, showed an apparent second peak of expression (10 days in vitro) and increased in the mature rat brain compared with the newborn brain. DRG cells expressed the highest levels of EB3, when compared with oligodendrocyte precursors and with astrocytes but not when compared with mature oligodendrocytes. Mature oligodendrocytes and oligodendrocyte precursors expressed ~30-40-fold more EB2 vs. EB3, and ~4-7-fold vs. ADNP. DRGs expressed ~5-fold more EB2 vs. EB3 and astrocytes showed an in-between (~20-fold) ratio. Only DRGs expressed similar EB1 and EB3 transcript levels, contrasting with oligodendrocyte and astrocytes (~10-30-fold more EB1). Astrocytes expressed more ADNP than DRGs and oligodendrocyte precursor cells (~2-fold) but not compared with mature oligodendrocytes. EB1 and EB3 were previously found to be associated with tau. Immortalized oligodendrocytes showed an intermediate phenotype of mRNA expression compared with oligodendrocyte precursor cells and mature oligodendrocytes with tau transfection reducing overall ADNP and EB expression. In summary, ADNPs and EBs are highly expressed in oligodendrocytes suggesting an impact on myelin formation in health and disease.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Oligodendroglía/metabolismo , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Línea Celular , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Proteínas Asociadas a Microtúbulos/metabolismo , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/genética , Oligodendroglía/citología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA