Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Recent Pat Biotechnol ; 18(4): 332-343, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817010

RESUMEN

BACKGROUND: Cancer is a leading cause of death and a significant public health issue worldwide. Standard treatment methods such as chemotherapy, radiotherapy, and surgery are only sometimes effective. Therefore, new therapeutic approaches are needed for cancer treatment. Sea anemone actinoporins are pore-forming toxins (PFTs) with membranolytic activities. RTX-A is a type of PFT that interacts with membrane phospholipids, resulting in pore formation. The synthesis of recombinant proteins in a secretory form has several advantages, including protein solubility and easy purification. In this study, we aimed to discover suitable signal peptides for producing RTX-A in Bacillus subtilis in a secretory form. METHODS: Signal peptides were selected from the Signal Peptide Web Server. The probability and secretion pathways of the selected signal peptides were evaluated using the SignalP server. ProtParam and Protein-sol were used to predict the physico-chemical properties and solubility. AlgPred was used to predict the allergenicity of RTX-A linked to suitable signal peptides. Non-allergenic, stable, and soluble signal peptides fused to proteins were chosen, and their secondary and tertiary structures were predicted using GOR IV and I-TASSER, respectively. The PROCHECK server performed the validation of 3D structures. RESULTS: According to bioinformatics analysis, the fusion forms of OSMY_ECOLI and MALE_ECOLI linked to RTX-A were identified as suitable signal peptides. The final proteins with signal peptides were stable, soluble, and non-allergenic for the human body. Moreover, they had appropriate secondary and tertiary structures. CONCLUSION: The signal above peptides appears ideal for rationalizing secretory and soluble RTX-A. Therefore, the signal peptides found in this study should be further investigated through experimental researches and patents.


Asunto(s)
Antineoplásicos , Bacillus subtilis , Simulación por Computador , Bacillus subtilis/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Señales de Clasificación de Proteína , Humanos , Patentes como Asunto , Solubilidad , Animales , Anémonas de Mar/química , Biología Computacional/métodos
2.
Arch Biochem Biophys ; 742: 109623, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37207934

RESUMEN

Actinoporins are pore-forming toxins produced by sea anemones. They exert their activity by binding to the membranes of target cells. There, they oligomerize, forming cation-selective pores, and inducing cell death by osmotic shock. In the early days of the field, it was shown that accessible sphingomyelin (SM) in the bilayer is required for the activity of actinoporins. While these toxins can also act on membranes composed solely of phosphatidylcholine (PC) with a high amount of cholesterol (Chol), consensus is that SM acts as a lipid receptor for actinoporins. It has been shown that the 2NH and 3OH moieties of SM are essential for actinoporin recognition. Hence, we wondered if ceramide-phosphoethanolamine (CPE) could also be recognized. Like SM, CPE has the 2NH and 3OH groups, and a positively charged headgroup. While actinoporins have been observed to affect membranes containing CPE, Chol was always also present, with the recognition of CPE remaining unclear. To test this possibility, we used sticholysins, produced by the Caribbean Sea anemone Stichodactyla helianthus. Our results show that sticholysins can induce calcein release on vesicles composed only of PC and CPE, in absence of Chol, in a way that is comparable to that induced on PC:SM membranes.


Asunto(s)
Anémonas de Mar , Esfingomielinas , Animales , Compuestos Orgánicos/metabolismo , Colesterol/metabolismo , Ceramidas/metabolismo , Anémonas de Mar/metabolismo
3.
Toxins (Basel) ; 15(1)2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36668899

RESUMEN

Actinoporins have emerged as archetypal α-pore-forming toxins (PFTs) that promote the formation of pores in membranes upon oligomerization and insertion of an α-helix pore-forming domain in the bilayer. These proteins have been used as active components of immunotoxins, therefore, understanding their lytic mechanism is crucial for developing this and other applications. However, the mechanism of how the biophysical properties of the membrane modulate the properties of pores generated by actinoporins remains unclear. Here we studied the effect of membrane fluidity on the permeabilizing activity of sticholysin I (St I), a toxin that belongs to the actinoporins family of α-PFTs. To modulate membrane fluidity we used vesicles made of an equimolar mixture of phosphatidylcholine (PC) and egg sphingomyelin (eggSM), in which PC contained fatty acids of different acyl chain lengths and degrees of unsaturation. Our detailed single-vesicle analysis revealed that when membrane fluidity is high, most of the vesicles are partially permeabilized in a graded manner. In contrast, more rigid membranes can be either completely permeabilized or not, indicating an all-or-none mechanism. Altogether, our results reveal that St I pores can be heterogeneous in size and stability, and that these properties depend on the fluid state of the lipid bilayer. We propose that membrane fluidity at different regions of cellular membranes is a key factor to modulate the activity of the actinoporins, which has implications for the design of different therapeutic strategies based on their lytic action.


Asunto(s)
Venenos de Cnidarios , Anémonas de Mar , Animales , Fluidez de la Membrana , Compuestos Orgánicos/química , Membrana Dobles de Lípidos , Membrana Celular/metabolismo , Fosfatidilcolinas , Venenos de Cnidarios/química , Anémonas de Mar/química
4.
Proteins ; 91(2): 137-146, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36000388

RESUMEN

Thermostable direct hemolysin (TDH) is a ~19 kDa, hemolytic pore-forming toxin from the gram-negative marine bacterium Vibrio parahaemolyticus, one of the causative agents of seafood-borne acute gastroenteritis and septicemia. Previous studies have established that TDH exists as a tetrameric assembly in physiological state; however, there is limited knowledge regarding the molecular arrangement of its disordered N-terminal region (NTR)-the absence of which has been shown to compromise TDH's hemolytic and cytotoxic abilities. In our current study, we have employed single-particle cryo-electron microscopy to resolve the solution-state structures of wild-type TDH and a TDH construct with deletion of the NTR (NTD), in order to investigate structural aspects of NTR on the overall tetrameric architecture. We observed that both TDH and NTD electron density maps, resolved at global resolutions of 4.5 and 4.2 Å, respectively, showed good correlation in their respective oligomeric architecture. Additionally, we were able to locate extra densities near the pore opening of TDH which might correspond to the disordered NTR. Surprisingly, under cryogenic conditions, we were also able to observe novel supramolecular assemblies of TDH tetramers, which we were able to resolve to 4.3 Å. We further investigated the tetrameric and inter-tetrameric interaction interfaces to elaborate upon the key residues involved in both TDH tetramers and TDH super assemblies. Our current structural study will aid in understanding the mechanistic aspects of this pore-forming toxin and the role of its disordered NTR in membrane interaction.


Asunto(s)
Toxinas Bacterianas , Vibrio parahaemolyticus , Vibrio parahaemolyticus/química , Microscopía por Crioelectrón , Proteínas Hemolisinas/química , Proteínas Hemolisinas/toxicidad , Toxinas Bacterianas/química
5.
Toxicon ; 222: 106994, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36529153

RESUMEN

Sticholysin I (StI) is a water-soluble protein with the ability to bind membranes where it oligomerizes and forms pores leading to cell death. Understanding the assembly property of this protein may be valuable for designing potential biotechnological tools, such as stable or structurally defined nanopores. In order to get insights into the stabilization of StI oligomers by disulfide bonds, we designed and characterized single and double cysteine mutants at the oligomerization interface. The oligomer formation was induced in the presence of lipid membranes and visualized by SDS-PAGE. The contribution of the oligomeric structures to the membrane binding and pore-forming capacities of StI was assessed. Single and double cysteine introduction at the protein-protein oligomerization interface does not considerably affect the conformation and function of the monomeric protein. In the presence of membranes, a cysteine double mutation at positions 15 and 59 favored formation of different size oligomers stabilized by disulfide bonds. The results of this work highlight the relevance of these positions (15 and 59) to be considered for developing biosensors based on nanopores from StI.


Asunto(s)
Cisteína , Toxinas Biológicas , Cisteína/química , Disulfuros
6.
Genome Biol Evol ; 14(11)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36256613

RESUMEN

Pore-forming toxins are an important component of the venom of many animals. Actinoporins are potent cytolysins that were first detected in the venom of sea anemones; however, they are occasionally found in animals other than cnidarians and are expanded in a few predatory gastropods. Here, we report the presence of 27 unique actinoporin-like genes with monophyletic origin in Mytilus galloprovincialis, which we have termed mytiporins. These mytiporins exhibited a remarkable level of molecular diversity and gene presence-absence variation, which warranted further studies aimed at elucidating their functional role. We structurally and functionally characterized mytiporin-1 and found significant differences from the archetypal actinoporin fragaceatoxin C. Mytiporin-1 showed weaker permeabilization activity, no specificity towards sphingomyelin, and weak activity in model lipid systems with negatively charged lipids. In contrast to fragaceatoxin C, which forms octameric pores, functional mytiporin-1 pores on negatively charged lipid membranes were hexameric. Similar hexameric pores were observed for coluporin-26 from Cumia reticulata and a conoporin from Conus andremenezi. This indicates that also other molluscan actinoporin-like proteins differ from fragaceatoxin C. Although the functional role of mytiporins in the context of molluscan physiology remains to be elucidated, the lineage-specific gene family expansion event that characterizes mytiporins indicates that strong selective forces acted on their molecular diversification. Given the tissue distribution of mytiporins, this process may have broadened the taxonomic breadth of their biological targets, which would have important implications for digestive processes or mucosal immunity.


Asunto(s)
Venenos de Cnidarios , Mytilus , Anémonas de Mar , Animales , Mytilus/genética , Venenos de Cnidarios/genética , Anémonas de Mar/genética , Anémonas de Mar/metabolismo , Lípidos
7.
Int J Mol Sci ; 23(15)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35955905

RESUMEN

Spanish or Spanish-speaking scientists represent a remarkably populated group within the scientific community studying pore-forming proteins. Some of these scientists, ourselves included, focus on the study of actinoporins, a fascinating group of metamorphic pore-forming proteins produced within the venom of several sea anemones. These toxic proteins can spontaneously transit from a water-soluble fold to an integral membrane ensemble because they specifically recognize sphingomyelin in the membrane. Once they bind to the bilayer, they subsequently oligomerize into a pore that triggers cell-death by osmotic shock. In addition to sphingomyelin, some actinoporins are especially sensible to some other membrane components such as cholesterol. Our group from Universidad Complutense of Madrid has focused greatly on the role played by sterols in this water-membrane transition, a question which still remains only partially solved and constitutes the main core of the article below.


Asunto(s)
Venenos de Cnidarios , Anémonas de Mar , Animales , Colesterol/metabolismo , Porinas/metabolismo , Esfingomielinas/metabolismo , Agua/metabolismo
8.
FEBS Lett ; 596(8): 1029-1036, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35253212

RESUMEN

Sticholysins are pore-forming toxins produced by the sea anemone Stichodactyla helianthus. When they encounter a sphingomyelin-containing membrane, these proteins bind to it and oligomerize, a process that ends in pore formation. Mounting evidence indicates that StnII can favour the activity of StnI. Previous results have shown that these two isotoxins can oligomerize together. Furthermore, StnII appeared to potentiate the activity of StnI through the membrane-binding step of the process. Hence, isotoxin interaction should occur prior to membrane encounter. Here, we have used analytical ultracentrifugation to investigate the oligomerization of Stns in solution, both separately and together. Our results indicate that while StnI seems to be more prone to oligomerize in water solution than StnII, a small percentage of StnII in StnI-StnII mixtures promotes oligomerization.


Asunto(s)
Anémonas de Mar , Animales , Membranas/metabolismo , Compuestos Orgánicos , Anémonas de Mar/metabolismo , Esfingomielinas/metabolismo
9.
Mar Drugs ; 20(1)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35049929

RESUMEN

Actinoporins are proteinaceous toxins known for their ability to bind to and create pores in cellular membranes. This quality has generated interest in their potential use as new tools, such as therapeutic immunotoxins. Isolated historically from sea anemones, genes encoding for similar actinoporin-like proteins have since been found in a small number of other animal phyla. Sequencing and de novo assembly of Irish Haliclona transcriptomes indicated that sponges also possess similar genes. An exhaustive analysis of publicly available sequencing data from other sponges showed that this is a potentially widespread feature of the Porifera. While many sponge proteins possess a sequence similarity of 27.70-59.06% to actinoporins, they show consistency in predicted structure. One gene copy from H. indistincta has significant sequence similarity to sea anemone actinoporins and possesses conserved residues associated with the fundamental roles of sphingomyelin recognition, membrane attachment, oligomerization, and pore formation, indicating that it may be an actinoporin. Phylogenetic analyses indicate frequent gene duplication, no distinct clade for sponge-derived proteins, and a stronger signal towards actinoporins than similar proteins from other phyla. Overall, this study provides evidence that a diverse array of Porifera represents a novel source of actinoporin-like proteins which may have biotechnological and pharmaceutical applications.


Asunto(s)
Organismos Acuáticos/química , Productos Biológicos/química , Poríferos/química , Animales , Filogenia
10.
Toxicon ; 204: 44-55, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34736955

RESUMEN

Sticholysin I (StI) is a pore-forming toxin (PFT) belonging to the actinoporin protein family characterized by high permeabilizing activity in membranes. StI readily associates with sphingomyelin (SM)-containing membranes originating pores that can lead to cell death. Binding and pore-formation are critically dependent on the physicochemical properties of membrane. 1-palmitoyl-2-oleoylphosphatidylcholine hydroperoxide (POPC-OOH) is an oxidized phospholipid (OxPL) containing an -OOH moiety in the unsaturated hydrocarbon chain which orientates towards the bilayer interface. This orientation causes an increase in the lipid molecular area, lateral expansion and decrease in bilayer thickness, elastic and bending modulus, as well as modification of lipid packing. Taking advantage of membrane structural changes promoted by POPC-OOH, we investigated its influence on the permeabilizing ability of StI. Here we report the action of StI on Giant Unilamellar Vesicles (GUVs) made of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and SM containing increasing amount of POPC-OOH to assess vesicle permeability changes when compared to OxPL-lacking membranes. Inclusion of POPC-OOH in membranes did not promote spontaneous vesicle leaking but resulted in increased membrane permeability due to StI action. StI activity did not modify the fluid-gel phase coexistence boundaries neither in POPC:SM or POPC-OOH:SM membranes. However, the StI insertion mechanism in membrane seems to differ between POPC:SM and POPC-OOH:SM mixtures as suggested by changes in the time course of monolayer surface tension measurements, even though a preferable binding of the toxin to OxPL-containing systems could not be here demonstrated. In summary, modifications in the membrane imposed by lipid hydroperoxidation favor StI permeabilizing activity.


Asunto(s)
Peróxido de Hidrógeno , Fosfolípidos , Membrana Dobles de Lípidos , Compuestos Orgánicos , Esfingomielinas , Liposomas Unilamelares
11.
Front Mol Biosci ; 8: 717147, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368235

RESUMEN

Thermostable direct hemolysin (TDH) is the major virulence determinant of the gastroenteric bacterial pathogen Vibrio parahaemolyticus. TDH is a membrane-damaging pore-forming toxin (PFT). TDH shares remarkable structural similarity with the actinoporin family of eukaryotic PFTs produced by the sea anemones. Unlike most of the PFTs, it exists as tetramer in solution, and such assembly state is crucial for its functionality. Although the structure of the tetrameric assembly of TDH in solution is known, membrane pore structure is not available yet. Also, the specific membrane-interaction mechanisms of TDH, and the exact role of any receptor(s) in such process, still remain unclear. In this mini review, we discuss some of the unique structural and physicochemical properties of TDH, and their implications for the membrane-damaging action of the toxin. We also present our current understanding regarding the membrane pore-formation mechanism of this atypical bacterial PFT.

12.
Biochim Biophys Acta Proteins Proteom ; 1869(10): 140696, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34246789

RESUMEN

Actinoporins constitute a family of α pore-forming toxins produced by sea anemones. The soluble fold of these proteins consists of a ß-sandwich flanked by two α-helices. Actinoporins exert their activity by specifically recognizing sphingomyelin at their target membranes. Once there, they penetrate the membrane with their N-terminal α-helices, a process that leads to the formation of cation-selective pores. These pores kill the target cells by provoking an osmotic shock on them. In this review, we examine the role and relevance of the structural features of actinoporins, down to the residue level. We look at the specific amino acids that play significant roles in the function of actinoporins and their fold. Particular emphasis is given to those residues that display a high degree of conservation across the actinoporin sequences known to date. In light of the latest findings in the field, the membrane requirements for pore formation, the effect of lipid composition, and the process of pore formation are also discussed.


Asunto(s)
Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Anémonas de Mar/metabolismo , Secuencias de Aminoácidos , Animales , Membrana Celular/metabolismo , Modelos Moleculares , Estructura Secundaria de Proteína , Anémonas de Mar/química , Esfingomielinas/metabolismo
13.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255441

RESUMEN

Venoms constitute complex mixtures of many different molecules arising from evolution in processes driven by continuous prey-predator interactions. One of the most common compounds in these venomous cocktails are pore-forming proteins, a family of toxins whose activity relies on the disruption of the plasmatic membranes by forming pores. The venom of sea anemones, belonging to the oldest lineage of venomous animals, contains a large amount of a characteristic group of pore-forming proteins known as actinoporins. They bind specifically to sphingomyelin-containing membranes and suffer a conformational metamorphosis that drives them to make pores. This event usually leads cells to death by osmotic shock. Sticholysins are the actinoporins produced by Stichodactyla helianthus. Three different isotoxins are known: Sticholysins I, II, and III. They share very similar amino acid sequence and three-dimensional structure but display different behavior in terms of lytic activity and ability to interact with cholesterol, an important lipid component of vertebrate membranes. In addition, sticholysins can act in synergy when exerting their toxin action. The subtle, but important, molecular nuances that explain their different behavior are described and discussed throughout the text. Improving our knowledge about sticholysins behavior is important for eventually developing them into biotechnological tools.


Asunto(s)
Venenos de Cnidarios/química , Anémonas de Mar/química , Secuencia de Aminoácidos/genética , Animales , Membrana Celular/genética , Membrana Celular/ultraestructura , Venenos de Cnidarios/genética , Compuestos Orgánicos/química , Conformación Proteica , Anémonas de Mar/genética , Anémonas de Mar/ultraestructura
14.
Toxins (Basel) ; 11(7)2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31295915

RESUMEN

Random mutations and selective pressure drive protein adaptation to the changing demands of the environment. As a consequence, nature favors the evolution of protein diversity. A group of proteins subject to exceptional environmental stress and known for their widespread diversity are the pore-forming hemolytic proteins from sea anemones, known as actinoporins. In this study, we identified and isolated new isoforms of actinoporins from the sea anemone Actinia fragacea (fragaceatoxins). We characterized their hemolytic activity, examined their stability and structure, and performed a comparative analysis of their primary sequence. Sequence alignment reveals that most of the variability among actinoporins is associated with non-functional residues. The differences in the thermal behavior among fragaceatoxins suggest that these variability sites contribute to changes in protein stability. In addition, the protein-protein interaction region showed a very high degree of identity (92%) within fragaceatoxins, but only 25% among all actinoporins examined, suggesting some degree of specificity at the species level. Our findings support the mechanism of evolutionary adaptation in actinoporins and reflect common pathways conducive to protein variability.


Asunto(s)
Venenos de Cnidarios/aislamiento & purificación , Proteínas Citotóxicas Formadoras de Poros/aislamiento & purificación , Anémonas de Mar , Animales , Venenos de Cnidarios/química , Venenos de Cnidarios/toxicidad , Eritrocitos/efectos de los fármacos , Hemólisis , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/toxicidad , Conformación Proteica , Ovinos
15.
J Struct Biol ; 208(1): 30-42, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31330179

RESUMEN

Sticholysin I (StI) is a toxin produced by the sea anemone Stichodactyla helianthus and belonging to the actinoporins family. Upon binding to sphingomyelin-containing membranes StI forms oligomeric pores, thereby leading to cell death. According to recent controversial experimental evidences, the pore architecture of actinoporins is a debated topic. Here, we investigated the StI topology in membranes by site-directed spin labeling and electron paramagnetic resonance spectroscopy. The results reveal that StI in membrane exhibits an oligomeric architecture with heterogeneous stoichiometry of predominantly eight or nine protomers, according to the available structural models. The StI topology resembles the conic pore structure reported for the actinoporin fragaceatoxin C. Our data show that StI coexists in two membrane-associated conformations, with the N-terminal segment either attached to the protein core or inserted in the membrane forming the pore. This finding suggests a 'pre-pore' to 'pore' transition determined by a conformational change that detaches the N-terminal segment.


Asunto(s)
Venenos de Cnidarios/metabolismo , Animales , Venenos de Cnidarios/química , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Estructura Secundaria de Proteína , Anémonas de Mar
16.
Mar Drugs ; 16(6)2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-29794988

RESUMEN

Sea anemones produce pore-forming toxins, actinoporins, which are interesting as tools for cytoplasmic membranes study, as well as being potential therapeutic agents for cancer therapy. This investigation is devoted to structural and functional study of the Heteractis crispa actinoporins diversity. Here, we described a multigene family consisting of 47 representatives expressed in the sea anemone tentacles as prepropeptide-coding transcripts. The phylogenetic analysis revealed that actinoporin clustering is consistent with the division of sea anemones into superfamilies and families. The transcriptomes of both H. crispa and Heteractis magnifica appear to contain a large repertoire of similar genes representing a rapid expansion of the actinoporin family due to gene duplication and sequence divergence. The presence of the most abundant specific group of actinoporins in H. crispa is the major difference between these species. The functional analysis of six recombinant actinoporins revealed that H. crispa actinoporin grouping was consistent with the different hemolytic activity of their representatives. According to molecular modeling data, we assume that the direction of the N-terminal dipole moment tightly reflects the actinoporins' ability to possess hemolytic activity.


Asunto(s)
Venenos de Cnidarios/farmacología , Hemólisis/efectos de los fármacos , Familia de Multigenes/genética , Proteínas Citotóxicas Formadoras de Poros/farmacología , Anémonas de Mar/genética , Secuencia de Aminoácidos , Animales , Membrana Celular/efectos de los fármacos , Venenos de Cnidarios/química , Venenos de Cnidarios/genética , Simulación por Computador , Duplicación de Gen , Simulación de Dinámica Molecular , Filogenia , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Anémonas de Mar/metabolismo , Transcriptoma/genética
17.
Biophys Rev ; 9(5): 529-544, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28853034

RESUMEN

Actinoporins constitute a unique class of pore-forming toxins found in sea anemones that are able to bind and oligomerize in membranes, leading to cell swelling, impairment of ionic gradients and, eventually, to cell death. In this review we summarize the knowledge generated from the combination of biochemical and biophysical approaches to the study of sticholysins I and II (Sts, StI/II), two actinoporins largely characterized by the Center of Protein Studies at the University of Havana during the last 20 years. These approaches include strategies for understanding the toxin structure-function relationship, the protein-membrane association process leading to pore formation and the interaction of toxin with cells. The rational combination of experimental and theoretical tools have allowed unraveling, at least partially, of the complex mechanisms involved in toxin-membrane interaction and of the molecular pathways triggered upon this interaction. The study of actinoporins is important not only to gain an understanding of their biological roles in anemone venom but also to investigate basic molecular mechanisms of protein insertion into membranes, protein-lipid interactions and the modulation of protein conformation by lipid binding. A deeper knowledge of the basic molecular mechanisms involved in Sts-cell interaction, as described in this review, will support the current investigations conducted by our group which focus on the design of immunotoxins against tumor cells and antigen-releasing systems to cell cytosol as Sts-based vaccine platforms.

18.
Semin Cell Dev Biol ; 72: 133-141, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28751252

RESUMEN

The ancient phylum of Cnidaria contains many aquatic species with peculiar lifestyle. In order to survive, these organisms have evolved attack and defense mechanisms that are enabled by specialized cells and highly developed venoms. Pore-forming toxins are an important part of their venomous arsenal. Along some other types, the most representative are examples of four protein families that are commonly found in other kingdoms of life: actinoporins, Cry-like proteins, aerolysin-like toxins and MACPF/CDC toxins. Some of the homologues of pore-forming toxins may serve other functions, such as in food digestion, development and response against pathogenic organisms. Due to their interesting physico-chemical properties, the cnidarian pore-forming toxins may also serve as tools in medical research and nanobiotechnological applications.


Asunto(s)
Cnidarios/metabolismo , Venenos de Cnidarios/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Toxinas Biológicas/metabolismo , Animales , Membrana Celular/metabolismo , Cnidarios/genética , Venenos de Cnidarios/química , Venenos de Cnidarios/genética , Modelos Moleculares , Filogenia , Proteínas Citotóxicas Formadoras de Poros/clasificación , Proteínas Citotóxicas Formadoras de Poros/genética , Conformación Proteica , Toxinas Biológicas/química , Toxinas Biológicas/genética
19.
Toxicon ; 118: 64-81, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27080349

RESUMEN

The sea anemone venom contains pore-forming proteins (PFP) named actinoporins, due to their purification from organisms belonging to Actiniaria order and its ability to form pores in sphingomyelin-containing membranes. Actinoporins are generally basic, monomeric and single-domain small proteins (∼20 kDa) that are classified as α-type PFP since the pore formation in membranes occur through α-helical elements. Different actinoporin isoforms have been isolated from most of the anemones species, as was analyzed in the first part of this review. Several actinoporin full-length genes have been identified from genomic-DNA libraries or messenger RNA. Since the actinoporins lack carbohydrates and disulfide bridges, their expression in bacterial systems is suitable. The actinoporins heterologous expression in Escherichia coli simplifies their production, replaces the natural source reducing the ecological damage in anemone populations, and allows the production of site-specific mutants for the study of the structure-function relationship. In this second part of the review, the strategies for heterologous production of actinoporins in Escherichia coli are analyzed, as well as the different approaches used for their purification. The activity of the recombinant proteins with respect to the wild-type is also reviewed.


Asunto(s)
Venenos de Cnidarios/metabolismo , Familia de Multigenes , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Recombinantes/biosíntesis , Anémonas de Mar/metabolismo , Animales , Resinas de Intercambio de Catión , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Venenos de Cnidarios/química , Venenos de Cnidarios/genética , Venenos de Cnidarios/toxicidad , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Hemolíticos/aislamiento & purificación , Hemolíticos/metabolismo , Hemolíticos/toxicidad , Proteínas Mutantes/biosíntesis , Proteínas Mutantes/química , Proteínas Mutantes/toxicidad , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/aislamiento & purificación , Proteínas Citotóxicas Formadoras de Poros/toxicidad , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/toxicidad , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/toxicidad
20.
Toxicon ; 103: 176-87, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26187849

RESUMEN

Actinoporins are basic pore-forming proteins produced by sea anemones, with molecular weight around 20 kDa showing high affinity for sphingomyelin-containing membranes. Most sea anemones produce more than one actinoporin isoform differing in isoelectric point, molecular weigth and cytolytic activity. Examples of sea anemones with actinoporin isoforms are: Actinia equina with at least five isoform genes; Actinia tenebrosa, three isoforms; Actinia fragacea, five isoforms; Actineria villosa, Phyllodiscus semoni, Stichodactyla helianthus and Oulactis orientalis, with two isoforms each one, and Heteractis crispa with twenty-four isoforms. Additionally, thirty-four different amino acid sequences were deduced from fifty-two nucleotide sequences of Heteractis magnifica toxins suggesting the presence of a large number of isoforms or allelic variants. Many amino acidic changes in the isoforms are located in important regions for pore formation. The genetic structure of actinoporins comprises a pre-propeptide and a mature toxin region; therefore, actinoporins could be synthetized in the Golgi apparatus as precursor forms. The subsequent maturation of the toxins involves a proteolytic processing during secretion. Here we hypothesize that sea anemones could have suffered duplication, conversion and mutation of genes that produced multigene families as an efficient response to evolutionary pressure, leading to successful strategies of predatory and defensive function.


Asunto(s)
Venenos de Cnidarios/genética , Familia de Multigenes , Anémonas de Mar/clasificación , Anémonas de Mar/genética , Alelos , Secuencia de Aminoácidos , Animales , Variación Genética , Punto Isoeléctrico , Datos de Secuencia Molecular , Peso Molecular , Filogenia , Conformación Proteica , Isoformas de Proteínas , Anémonas de Mar/metabolismo , Esfingomielinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA