Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Sci Rep ; 14(1): 21024, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251625

RESUMEN

A new conducting polymer of the cellulose acetate poly acrylonitrile (CAPA)-SiC composite was produced using an in situ oxidative polymerization technique in an aqueous medium. SiC was synthesized from Cinachyrella sp. as a source of carbon and silicon at 1200 °C under an argon atmosphere via a catalytic reduction process. The structure and morphology of the CAPA-SiC composite were characterized using surface area studies (BET), X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), and surface morphology (SEM & TEM). To protect copper, the produced CAPA-SiC composite was mixed with commercial epoxy paint using a casting technique, and the copper surface was coated with the three components of the CAPA-SiC/epoxy paint mixture. The corrosion inhibition improvement of the CAPA-SiC/paint coating was assessed using electrochemical impedance spectroscopy followed by Tafel polarization measurements in a 3.5 wt% NaCl solution. The corrosion protection ability of the CAPA-SiC/epoxy coating was found to be outstanding at 97.4% when compared to that of a CAPA/paint coating. SEM and XRD were used to illustrate the coating on the copper surface.

2.
Materials (Basel) ; 17(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39124382

RESUMEN

The goal of this work was to develop acrylonitrile-butadiene (NBR) elastomer composites filled with hydroxyapatite (HAP) characterized by improved cure characteristics and resistance to burning. Silane, i.e., (3-aminopropyl)-triethoxysilane, ionic liquid, i.e., 1-decyl-3-methylimidazolium bromide and surfactant, i.e., cetyltrimethylammonium bromide, were used to improve the filler's dispersibility in the elastomer matrix and to reduce the time and temperature of vulcanization. The effects of HAP and dispersants on the cure characteristics, crosslink density and physico-chemical properties of NBR composites were explored. The additives used, especially the ionic liquid and surfactant, effectively improved the dispersion of HAP in the NBR matrix. The amount of HAP and the dispersant used strongly affected the cure characteristics and crosslink density of NBR. The optimal vulcanization time significantly increased with HAP content and was pronouncedly reduced when ionic liquid and surfactant were applied. In addition, ionic liquid and surfactant significantly lowered the onset vulcanization temperature and improved the crosslink density and hardness of the vulcanizates while impairing their elasticity. HAP and dispersants did not significantly affect the damping properties or chemical resistance of NBR vulcanizates. Above all, application of HAP considerably enhanced the resistance of vulcanizates to thermo-oxidative aging and reduced their flammability compared with the unfilled NBR.

3.
J Fluoresc ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136913

RESUMEN

The analysis of the shift in photoluminescence emission for a blend of polyvinylcarbazole and acrylonitrile derivative compounds is reported. The small-molecule compounds have different functional groups, phenyl, pyridine, or methyl phenyl, attached to an acrylonitrile group. According to the functional group, the blue emission for pure dye shifts to green or yellowish in the blend film. Several PVK:dye ratios from 0:100 to 20:80 were used for film deposition. The film morphology was analyzed by atomic force microscopy; for low dye content, homogeneous films were achieved. However, aggregates of several micrometers are formed on the surface of films with higher dye concentrations. The shift in emission occurs only with PVK, and for a non-conjugated matrix such as polystyrene, the emission remains unchanged. The interaction of dyes with PVK leading to change in emission was also achieved by grinding dye and polymer. Results showed that shifts in emission could come from exciplex formation along with changes in dye intermolecular interactions. The blend films were highly transparent in the visible spectra due to the absorption in the UV region for dye and matrix. The films with ratio PVK: dye ratio 80:20 was used as active layer in OLEDs.

4.
Polymers (Basel) ; 16(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39065325

RESUMEN

The development of multi-material filaments has enabled fused filament fabrication-based additive manufacturing to address demand for high-performance lightweight multifunctional components. In this study, polylactic acid (PLA) and acrylonitrile butadiene styrene based filaments with metallic reinforcements of magnetic iron (MI), stainless steel (SS), bronze (Br), copper (Cu), Bismuth (Bi), and Tungsten (W) were investigated to elucidate their complex processing-structure-property relationships. The microstructure of 3D-printed materials were characterized by microscopy and analyzed to determine the metal cross-sectional area percentage and the relationship between metal reinforcement, the polymer matrix, and porosity. Compression testing was conducted in directions parallel and perpendicular to the build direction in order to evaluate the effect of orientation and metal reinforcement on the mechanical properties. 3D-printed specimens experienced either fracture through print layers or layer-wise interfacial rupture for loads applied perpendicular and parallel to the print layers, respectively. A dependence of yield strength on loading orientation was observed for Br-PLA, Cu-PLA, SS-PLA, Bi-ABS, and W-ABS; however, MI-PLA and pure ABS specimens did not exhibit this sensitivity. Metal reinforcement also influenced the magnitude of compressive yield strength, with MI-PLA and SS-PLA demonstrating increased strength over Br-PLA and Cu-PLA, while ABS demonstrated increased strength over Bi-ABS and W-ABS. These results demonstrate the importance of considering orientation in printing and applications, the trade-off between various metallic reinforcements for added multifunctionality, and the potential of these tailored polymer composites for novel 3D-printed structures.

5.
Polymers (Basel) ; 16(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39065353

RESUMEN

The effects of complex well conditions in shale oil wells on the swelling and tribological properties of high-acrylonitrile stator rubber used in screw pumps were investigated in this study. Tests were conducted considering the combined effects of immersion medium, temperature, and duration. The key parameters measured included mass change rate, volume change rate, hardness, elongation at break, tensile strength, surface micro-morphology of the rubber after thermal expansion and swelling, friction coefficient, and wear quantity. The results indicated that in the actual well fluids, the mass change rate of high-acrylonitrile rubber ranged from -1.08% to 1.29%, with a maximum volume change rate of 2.78%. In diesel oil, the greatest mass change rate of the rubber was 4.68%, and the volume change rate did not exceed ±1%, indicating superior swelling resistance. In both actual well fluids and diesel oil, the maximum decreases in hardness were 8.7% and 9.5%, respectively. Tensile strength and elongation at break decreased with increasing immersion temperature, with elongation at break in 80 °C diesel oil decreasing by over 50%, indicating a significant decline in the tensile properties of the rubber. The average friction coefficient of rubber specimens immersed in actual well fluids at three temperatures, as well as in diesel oil at 25 and 50 °C, decreased compared with the high-acrylonitrile rubber without thermal expansion and swelling. However, the average friction coefficient of rubber specimens immersed in diesel oil at 80 °C increased. The wear quantity of the rubber increased following immersion in both media. Additionally, the friction coefficient and wear quantity of the rubber increased with increasing immersion temperatures. The results of the study can offer valuable insights into assessing the durability of properties in high-acrylonitrile stator rubber under complex well conditions.

6.
Environ Res ; 259: 119533, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38960354

RESUMEN

The degradation of persistent and refractory pollutants, particularly plastic and resins manufacturing wastewater, poses a significant challenge due to their high toxicity and high concentrations. This study developed a novel hybrid ACoO3 (A = La, Ce, Sr)/PMS perovskite system for the treatment of multicomponent (MCs; ACN, ACM and ACY) from synthetic resin manufacturing wastewater. Synthesized perovskites were characterized by various techniques i.e., BET, XRD, FESEM with EDAX, FTIR, TEM, XPS, EIS, and Tafel analysis. Perovskite LaCoO3 exhibited the highest degradation of MCs i.e., ACN (98.7%), ACM (86.3%), and ACY (56.4%), with consumption of PMS (95.2%) under the optimal operating conditions (LaCoO3 dose 0.8 g/L, PMS dose 2 g/L, pH 7.2 and reaction temperature 55 °C). The quantitative contribution (%) of reactive oxygen species (ROS) reveals that SO4•- are the dominating radical species, which contribute to ACN (58.3% for SO4•- radicals) and ACM degradation (46.4% for SO4•- radicals). The tafel plots and EIS spectra demonstrated that perovskites LaCoO3 have better charge transfer rates and more reactive sites that are favorable for PMS activation. Further, four major degradation pathways were proposed based on Fukui index calculations, as well as GC-MS characterization of intermediate byproducts. Based on a stability and reusability study, it was concluded that LaCoO3 perovskites are highly stable, and minimal cobalt leaching occurs (0.96 mg/L) after four cycles. The eco-toxicity assessment performed using QSAR model indicated that the byproducts of the LaCoO3/PMS system are non-toxic nature to common organism (i.e., fish, daphnids and green algae). In addition, the cost of the hybrid LaCoO3/PMS system in a single cycle was estimated to be $34.79 per cubic meter of resin wastewater.


Asunto(s)
Compuestos de Calcio , Oxidación-Reducción , Óxidos , Titanio , Contaminantes Químicos del Agua , Óxidos/química , Óxidos/toxicidad , Titanio/química , Titanio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Compuestos de Calcio/química , Compuestos de Calcio/toxicidad , Cobalto/química , Cobalto/toxicidad , Cationes/química , Teoría Funcional de la Densidad , Aguas Residuales/química
7.
Sci Rep ; 14(1): 13216, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851832

RESUMEN

This study explores the mechanical properties and fracture characteristics of additively manufactured acrylonitrile butadiene styrene specimens, focusing on the impact of raster angle and post-process heat treatment. To this end, a large number of tensile and semi-circular bending samples with three distinct raster angles of 0/90°, 22/ - 68°, and 45/ - 45° were prepared and exposed to four types of heat treatments with different temperature and pressure conditions. Simultaneously, theoretical models of maximum tangential stress (MTS) and generalized MTS (GMTS) were developed to estimate the onset of specimen fracture under mixed-mode in-plane loading conditions. Recognizing the non-linear behavior within the stress-strain curve of tensile test samples, particularly in the annealed samples, an effort was undertaken to transform the original ductile material into a virtual brittle material through the application of the equivalent material concept (EMC). This approach serves the dual purpose of bypassing intricate and tedious elastoplastic analysis, while concurrently enhancing the precision of the GMTS criterion. The experimental findings have revealed that while the annealing process has a minimal effect on the yield strength, it considerably enhances energy absorption capacity, increases fracture toughness, and reduces the anisotropy. Additionally, the combined EMC-GMTS criterion has demonstrated its capability to predict the failure of the additively manufactured parts with an acceptable level of accuracy.

8.
Materials (Basel) ; 17(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38893888

RESUMEN

This study investigates the effect of extrusion screw speed and carbon nanotube (CNT) concentration on the thermal, mechanical, and electromagnetic interference shielding effectiveness (EMI SE) properties of Polycarbonate (PC)/acrylonitrile-butadiene-styrene (ABS) and its polymer nanocomposites (PNCs) by means of design of experiments (DoE) approach. A masterbatch method was employed to obtain the best dispersion of the CNTs throughout the polymer matrix. This study evaluates the thermo-mechanical characterisation of the polymers and PNCs at varying screw speeds to assess filler matrix bonding. The results highlight that CNT concentration has a significant effect on all mechanical properties, while screw speed only affects the Charpy impact strength and flexural properties of the samples. Compounding at 200 rpm has the best flexural and tensile strength, which is attributed to the best filler matrix bonding (highest storage modulus) of the PNCs. The best EMI SE results were obtained at 10 wt.% CNTs. This research contributes valuable insights into the effect of CNT concentration and extrusion screw speed on the mechanical, thermal and EMI SE properties of PC/ABS and its PNCs.

9.
Materials (Basel) ; 17(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930213

RESUMEN

The glycolysis process of flexible polyurethane foams containing styrene-acrylonitrile and calcium carbonate as fillers was explored in detail. The use of DABCO as a catalyst allowed us to reduce the catalyst concentration and the polyurethane-to-glycol mass ratio to 0.1% and 1:1, respectively. The glycolysis process allowed us to obtain a high-purity polyol (99%), which can totally replace raw polyols in the synthesis of new flexible polyurethane foams, maintaining the standard mechanical properties of the original one and modifying the ratio of isocyanates employed to correct the closed cell structure caused by the impurities present in the recovered polyol. This isocyanate mixture was also optimized, resulting in a ratio of 30 and 70% of the isocyanates TDI80 and TDI65, respectively. Additionally, the fillers incorporated in the glycolyzed foams were recovered. Both recovered fillers, styrene-acrylonitrile and calcium carbonate, were fully characterized, showing a quality very similar to that of commercial compounds. Finally, the replacement of commercial fillers by the recovered ones in the synthesis of new polyurethane foams was studied, demonstrating the feasibility of using them in the synthesis of new foams without significantly altering their properties.

10.
Molecules ; 29(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38930802

RESUMEN

The expansive utility of polymeric 3D-printing technologies and demand for high- performance lightweight structures has prompted the emergence of various carbon-reinforced polymer composite filaments. However, detailed characterization of the processing-microstructure-property relationships of these materials is still required to realize their full potential. In this study, acrylonitrile butadiene styrene (ABS) and two carbon-reinforced ABS variants, with either carbon nanotubes (CNT) or 5 wt.% chopped carbon fiber (CF), were designed in a bio-inspired honeycomb geometry. These structures were manufactured by fused filament fabrication (FFF) and investigated across a range of layer thicknesses and hexagonal (hex) sizes. Microscopy of material cross-sections was conducted to evaluate the relationship between print parameters and porosity. Analyses determined a trend of reduced porosity with lower print-layer heights and hex sizes compared to larger print-layer heights and hex sizes. Mechanical properties were evaluated through compression testing, with ABS specimens achieving higher compressive yield strength, while CNT-ABS achieved higher ultimate compressive strength due to the reduction in porosity and subsequent strengthening. A trend of decreasing strength with increasing hex size across all materials was supported by the negative correlation between porosity and increasing print-layer height and hex size. We elucidated the potential of honeycomb ABS, CNT-ABS, and ABS-5wt.% CF polymer composites for novel 3D-printed structures. These studies were supported by the development of a predictive classification and regression supervised machine learning model with 0.92 accuracy and a 0.96 coefficient of determination to help inform and guide design for targeted performance.

11.
Heliyon ; 10(11): e32094, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38882316

RESUMEN

Acrylonitrile butadiene styrene (ABS) composites were prepared in filament form compatible with the material extrusion (MEX) 3D printing method, using biochar as a filler at various loadings of up to 10.0 wt %. Samples were fabricated to experimentally investigate their mechanical performance. The ABS/biochar composites were characterized using thermogravimetric analysis, differential scanning calorimetry, Raman spectroscopy, and rheological tests. The electrical properties of the composites were investigated using broadband dielectric spectroscopy. Scanning electron microscopy was utilized to analyze the morphological features of the fabricated specimens by examining their side and fracture surfaces. The results indicate that the composite with 4.0 wt % biochar content compared to pure ABS showed the highest mechanical response between the prepared composites (24.9 % and 21 % higher than the pure ABS tensile and flexural strength respectively). The composites retained their insulating behavior. These findings contribute to expanding the utilization of the material extrusion (MEX) 3D printing method while also unlocking prospects for potential applications in microelectronics, apart from mechanical reinforcement.

12.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792160

RESUMEN

An interconnected sponge structure and porous surface poly (acrylonitrile-co-methyl acrylate) (P(AN-MA)) microfiltration membranes (MF) were fabricated via thermally induced phase separation (TIPS) by using caprolactam (CPL), and acetamide (AC) as the mixed diluent. When the ternary system was composed of 15 wt.% P(AN-MA), 90 wt.% CPL, and 10 wt.% AC and formed in a 25 °C air bath, the membrane exhibited the highest water flux of 8107 L/m2·h. The P(AN-MA) membrane contained hydrophobic groups (-COOCH3) and hydrophilic groups (-CN), leading it to exhibit oleophobic properties underwater and hydrophobic properties in oil. The membrane demonstrates efficient separation of immiscible oil/water mixtures. The pure water flux of the petroleum ether/water mixture measured 870 L/m2·h, and the pure oil flux of the petroleum tetrachloride/water mixture measured 1230 L/m2·h under the influence of gravity. Additionally, the recovery efficiency of diluents through recrystallization was 85.3%, significantly reducing potential pollution and production costs.

13.
Polymers (Basel) ; 16(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38794498

RESUMEN

Quantitative converse piezoelectric coefficient (d33) mapping of polymer ultrafine fibers of poly(acrylonitrile) (PAN), as well as of poly(vinylidene fluoride) (PVDF) as a reference material, obtained by rotating electrospinning, was carried out by piezoresponse force microscopy in the constant-excitation frequency-modulation mode (CE-FM-PFM). PFM mapping of single fibers reveals their piezoelectric activity and provides information on its distribution along the fiber length. Uniform behavior is typically observed on a length scale of a few micrometers. In some cases, variations with sinusoidal dependence along the fiber are reported, compatibly with a possible twisting around the fiber axis. The observed features of the piezoelectric yield have motivated numerical simulations of the surface displacement in a piezoelectric ultrafine fiber concerned by the electric field generated by biasing of the PFM probe. Uniform alignment of the piezoelectric axis along the fiber would comply with the uniform but strongly variable values observed, and sinusoidal variations were occasionally found on the fibers laying on the conductive substrate. Furthermore, in the latter case, numerical simulations show that the piezoelectric tensor's shear terms should be carefully considered in estimations since they may provide a remarkably different contribution to the overall deformation profile.

14.
Polymers (Basel) ; 16(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732768

RESUMEN

Prior studies into fatigue crack growth (FCG) in fibre-reinforced polymer composites have shown that the two methodologies of Simple-Scaling and the Hartman-Schijve crack growth equation, which is based on relating the FCG rate to the Schwalbe crack driving force, Δκ, were able to account for differences observed in the measured delamination growth curves. The present paper reveals that these two approaches are also able to account for differences seen in plots of the rate of crack growth, da/dt, versus the range of the imposed stress intensity factor, ΔK, associated with fatigue tests on different grades of high-density polyethylene (HDPE) polymers, before and after electron-beam irradiation, and for tests conducted at different R ratios. Also, these studies are successfully extended to consider FCG in an acrylonitrile butadiene styrene (ABS) polymer that is processed using both conventional injection moulding and additive-manufactured (AM) 3D printing.

15.
3D Print Addit Manuf ; 11(2): e764-e772, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689930

RESUMEN

Additive manufacturing is becoming a global phenomenon due to its versatile properties and numerous benefits, which is not possible by conventional machining processes. Fused deposition modeling (FDM) shows a huge potential of shift from rapid prototyping toward the rapid manufacturing. Nowadays, the strength of the FDM-printed parts is very important to consider along with all the printing parameters, which affect the strength of these parts. This study includes the investigation of printing parameters (infill density, layer thickness, and shell count) on the strength of FDM-printed parts of acrylonitrile butadiene styrene (ABS) and carbon fiber-reinforced ABS (ABS-CF). These printing parameters directly affect the quality as well as the strength of the 3D-printed parts through FDM. Tensile tests were performed on the universal testing machine on both types of printed parts. The optimized parameters for the 3D-printed samples of the pristine ABS are found to be 0.1045 mm of layer thickness, 57.72% of infill density, and 7.63 numbers of shell count, while the optimum parameters obtained for ABS-CF are 0.2780 mm of layer thickness, 28.37% of infill density, and 9.88 numbers of shell count. The results show that the layer thickness and shell count have a significant effect on the ultimate tensile strength of the 3D-printed parts.

16.
Sci Rep ; 14(1): 3531, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347016

RESUMEN

Phenolic compound even at low concentrations, are considered to be priority pollutants due to their significant toxicity. Electrospinning was used to create a polyacrylonitril (PAN) nanofiber, which was then impregnated with graphene oxide (GO). After a preliminary investigation into the electrospinning parameters (e.g., using various voltages and polymer concentrations), the electrospun nanofibres were tuned, this study evaluated the effectiveness of these materials in removing phenolic compounds from wastewater through adsorption. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to analyze the synthesized nanofiber mats. The scanning electron microscopy (SEM) analysis revealed that the structure of nanofiber mats was altered by the addition of graphene oxide (GO) in different ratios. Specifically, the surface of the fibres exhibited increased roughness, and the diameter of the fibres also experienced an increase. The average diameter of the fibres was measured to be (134.9 ± 21.43 nm) for the PAN/2.5% GO composite and (198 ± 33.94 nm) for the PAN/5% GO composite. FTIR spectra of the PAN/GO nanocomposites nanofiber displayed distinct peaks associated with graphene oxide (GO). These included a wide peak at 3400 cm-1, related to the presence of hydroxyl (O-H) groups, as well as peaks on 1600 as well as 1000 cm-1, which indicated the existence of epoxy groups. In this study response surface methodology (RSM) was implemented. To enhance the efficiency of removing substances, it is necessary to optimise parameters such as pH, contact time, and dosage of the adsorbent. The optimum pH for removing phenol via all nanofiber mats was determined to be 7, while at a dose of 2 mg dose adsorbents maximum removals for pure PAN, PAN/2.5 GO, and PAN/5 GO were 61.3941, 77.2118, and 92.76139%, respectively. All the adsorbents obey Langmuir isotherm model, and the empirical adsorption findings were fitted with the second-order model kinetically, also non-linear Elovich model. The maximal monolayer adsorption capacities for PAN, PAN/2.5 GO, and PAN/5 GO were found to be 57.4, 66.18, and 69.7 mg/g, respectively. Thermodynamic studies discovered that the adsorption of phenol on all adsorbents nanofiber mats was exothermic, the adsorption of phenol on nanofiber mats decreases as the temperature increases. All the adsorbents exhibit negative enthalpy and entropy. The PAN/GO composite's superior phenol removal suggested that it could be used as a latent adsorbent for efficient phenol removal from water and wastewater streams.

17.
Heliyon ; 10(3): e25356, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38371987

RESUMEN

Wind energy conversion systems (WECS) have gained increasing attention in recent years as promising renewable energy sources. Despite their potential, a clear research gap exists: the majority of WECS underperform in low wind speed conditions, limiting their applicability in many regions. To address this problem, this study proposes a novel approach by developing a 100 W micro wind turbine using Polylactic Acid (PLA) to generate efficient power in low wind speed conditions. The proposed wind turbine design employs Blade Element Momentum Theory (BEMT), which is commonly used for modeling wind turbine performance. Geometric design, mechanical analysis, and aerodynamic analysis are the fundamental considerations for designing any machine. In this work, the CREO 3.0 three-dimensional modeling software is used to create the geometric design of the proposed work. The airfoil SD7080 is selected due to its superior aerodynamic performance, and mechanical properties such as Young's modulus, density, and Poisson's ratio are attained to evaluate the wind blade's performance. Additionally, ANSYS 15.0 is used to conduct a detailed analysis of the proposed wind turbine, evaluating properties such as equivalent stress, deformation, and equivalent strain. Both simulation (ANSYS 15.0) and experimental setups are used to investigate the proposed wind turbine's performance, and the corresponding results are presented and discussed in this manuscript. The results indicate a significant performance improvement of the proposed wind blade when compared to conventional and ABS wind blades, demonstrating its potential as a more efficient solution for WECS. This proposed wind turbine design overcomes the problems like underprformance in low wind speed conditions and the wind turbine efficiency in all regions.

18.
3D Print Addit Manuf ; 11(1): 276-286, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38389678

RESUMEN

This study aims to evaluate the effective use of porous pumice powder as an additive in acrylonitrile-butadiene-styrene (ABS)-based composite materials. The influence of pumice addition on mechanical, thermomechanical, thermal, and physical properties of ABS filaments was reported. Two types of pumice, namely acidic pumice (AP) and basic pumice (BP), were melt compounded with ABS at loading levels of 5%, 10%, 15%, and 20% by weight using the melt extrusion preparation method. Composites were shaped into dog bone test specimens by the injection molding process. The physical properties of pumice powders were investigated by particle size analysis and X-ray spectroscopy techniques. Mechanical, thermomechanical, thermal, melt flow, and morphological behaviors of ABS/AP and ABS/BP composite filaments were proposed. According to test results, pumice addition led to an increase in the mechanical response of ABS up to a filling ratio of 10%. Further inclusion of pumice caused sharp reduction due to the possible agglomeration of pumice particles. Composites filled with AP yielded remarkably higher mechanical performance in terms of tensile, impact, and hardness strength compared with BP-loaded composites. According to thermal analyses, ABS exhibited higher thermal stability after incorporation of AP and BP. Pumice addition also resulted in raising the glass transition temperature of ABS. Melt flow index (MFI) findings revealed that addition of two types of pumice led to an opposite trend in the melt flow behavior of ABS filaments. Homogeneous dispersion of pumice particles into the ABS matrix when adding low amounts, as well as reduction in dispersion homogeneity with high amounts, of AP and BP was confirmed by scanning electron microscopy (SEM) micrographs.

19.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279241

RESUMEN

We previously discovered WS-6 as a new antidepressant in correlation to its function of stimulating neurogenesis. Herein, several different scaffolds (stilbene, 1,3-diphenyl 1-propene, 1,3-diphenyl 2-propene, 1,2-diphenyl acrylo-1-nitrile, 1,2-diphenyl acrylo-2-nitrile, 1,3-diphenyl trimethylamine), further varied through substitutions of twelve amide substituents plus the addition of a methylene unit and an inverted amide, were examined to elucidate the SARs for promoting adult rat neurogenesis. Most of the compounds could stimulate proliferation of progenitors, but just a few chemicals possessing a specific structural profile, exemplified by diphenyl acrylonitrile 29b, 32a, and 32b, showed better activity than the clinical drug NSI-189 in promoting newborn cells differentiation into mature neurons. The most potent diphenyl acrylonitrile 32b had an excellent brain AUC to plasma AUC ratio (B/P = 1.6), suggesting its potential for further development as a new lead.


Asunto(s)
Acrilonitrilo , Alquenos , Compuestos de Bifenilo , Ratas , Animales , Acrilonitrilo/farmacología , Neurogénesis , Hipocampo , Nitrilos/farmacología , Amidas
20.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067482

RESUMEN

Electron Beam (EB) irradiation was utilized to decontaminate model systems of industrial polymers that contain a brominated flame retardant (BFR). Acrylonitrile-butadiene-styrene (ABS) and Polycarbonate (PC) are two types of polymers commonly found in Waste Electrical and Electronic Equipment (WEEE). In this study, these polymers were exposed to EB irradiation to degrade DecaBromoDiphenylEther (DBDE), one of the most toxic BFRs. Fourier-transform infrared spectroscopy analysis demonstrated an 87% degradation rate of DBDE for the ABS-DBDE system and 91% for the PC-DBDE system following an 1800 kGy irradiation dose. Thermal analysis using Differential Scanning Calorimetry revealed the presence of crosslinking in ABS and a minor reduction in the glass transition temperature of PC after EB processing. Polymers exhibited thermal stability after photolysis, as indicated by thermogravimetric analysis. In summary, EB irradiation had no impact on the overall thermal properties of both polymers. High-resolution mass spectrometry analysis has confirmed the debromination of both ABS-DBDE and PC-DBDE systems. Therefore, the results obtained are promising and could offer an alternative approach for removing bromine and other additives from plastic E-waste.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA