Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ultrasonics ; 141: 107338, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723293

RESUMEN

Recently, the moiré pattern has attracted lots of attention by superimposing two planar structures of regular geometries, such as two sets of metasurfaces or gratings. Here, we show the experimental investigation of acoustic moiré effect by using twisted bilayer gratings (i.e., one grating twisted with respect to the other). We observed the guided resonance that occurred when the incident ultrasound beam was coupled with the guiding modes in a meta-grating, significantly influencing the reflection and transmission. Tunable guided resonances from the moiré effect with complete ultrasound reflection at different frequencies were further demonstrated in experiments. Combining the measurements of transmission spectra and the Fast Fourier Transform analyses, we reveal the guided resonance frequencies of moiré ultrasonic metasurface can be effectively controlled by adjusting the twisting angle of the bilayer gratings. Our results can be explained in a simplified model based on the band folding theory, providing a reliable prediction on the precise control of ultrasound reflection via the twisting angle adjustment. Our work extends the moiré metasurface from optics into acoustics, which shows more possibilities for the ultrasound beam engineering from the moiré effect and enables the exploration of functional acoustic devices for ultrasound imaging, treatment and diagnosis.

2.
Micromachines (Basel) ; 14(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37374762

RESUMEN

Focused ultrasound featuring non-destructive and high sensitivity has attracted widespread attention in biomedical and industrial evaluation. However, most traditional focusing techniques focus on the design and improvement of single-point focusing, neglecting the need to carry more dimensions of multifocal beams. Here we propose an automatic multifocal beamforming method, which is implemented using a four-step phase metasurface. The metasurface composed of four-step phases improves the transmission efficiency of acoustic waves as a matching layer and enhances the focusing efficiency at the target focal position. The change in the number of focused beams does not affect the full width at half maximum (FWHM), revealing the flexibility of the arbitrary multifocal beamforming method. Phase-optimized hybrid lenses reduce the sidelobe amplitude, and excellent agreement is observed between the simulation and experiments for triple-focusing beamforming metasurface lenses. The particle trapping experiment further validates the profile of the triple-focusing beam. The proposed hybrid lens can achieve flexible focusing in three dimensions (3D) and arbitrary multipoint, which may have potential prospects for biomedical imaging, acoustic tweezers, and brain neural modulation.

3.
Adv Sci (Weinh) ; 9(33): e2203482, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36253153

RESUMEN

Despite the significance for wave physics and potential applications, high-efficiency frequency conversion of low-frequency waves cannot be achieved with conventional nonlinearity-based mechanisms with poor mode purity, conversion efficiency, and real-time reconfigurability of the generated harmonic waves in both optics and acoustics. Rotational Doppler effect provides an intuitive paradigm to shifting the frequency in a linear system which, however, needs a spiral-phase change upon the wave propagation. Here a rotating passive linear vortex metasurface is numerically and experimentally presented with close-to-unity mode purity (>93%) and high conversion efficiency (>65%) in audible sound frequency as low as 3000 Hz. The topological charge of the transmitted sound is almost immune from the rotational speed and transmissivity, demonstrating the mechanical robustness and stability in adjusting the high-performance frequency conversion in situ. These features enable the researchers to cascade multiple vortex metasurfaces to further enlarge and diversify the extent of sound frequency conversion, which are experimentally verified. This strategy takes a step further toward the freewheeling sound manipulation at acoustic frequency domain, and may have far-researching impacts in various acoustic communications, signal processing, and contactless detection.

4.
Front Neurosci ; 16: 984953, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117633

RESUMEN

Transcranial focused ultrasound (tFUS) is a promising technique for non-invasive and spatially targeted neuromodulation and treatment of brain diseases. Acoustic lenses were designed to correct the skull-induced beam aberration, but these designs could only generate static focused ultrasound beams inside the brain. Here, we designed and 3D printed binary acoustic metasurfaces (BAMs) for skull aberration correction and dynamic ultrasound beam focusing. BAMs were designed by binarizing the phase distribution at the surface of the metasurfaces. The phase distribution was calculated based on time reversal to correct the skull-induced phase aberration. The binarization enabled the ultrasound beam to be dynamically steered along wave propagation direction by adjusting the operation frequency of the incident ultrasound wave. The designed BAMs were manufactured by 3D printing with two coding bits, a polylactic acid unit for bit "1" and a water unit for bit "0." BAMs for single- and multi-point focusing through the human skull were designed, 3D printed, and validated numerically and experimentally. The proposed BAMs with subwavelength scale in thickness are simple to design, easy to fabric, and capable of correcting skull aberration and achieving dynamic beam steering.

5.
Materials (Basel) ; 15(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35161133

RESUMEN

This work proposes a method for actively constructing acoustic metasurface (AMS) based on the split hollow cuboid (SHC) structure of local resonance, with the designed AMS flexibly manipulating the direction of reflected acoustic waves at a given frequency range. The AMS was obtained by precisely adjusting any one or two types of structural parameters of the SHC unit, which included the diameter of the split hole, the length, width, height, and shell thickness of the SHC. The simulation results showed that the AMS can flexibly manipulate the direction of the reflected acoustic waves, and the anomalous reflection angle obeys the generalized Snell's law. Furthermore, among the five structural parameters, the AMS's response frequency band is widest with the hole diameter and height, followed by the length and width, and narrowest with the shell thickness. It is worth noting that comprehensive manipulation of two parameters not only broadens the response frequency band, but also strengthens the effect of the anomalous reflection at the same response frequency. The subwavelength size of the AMS constructed with such a comprehensive method has the advantages of a small size, wide response band, simple preparation, and flexible modulation, and can be widely used in various fields, such as medical imaging and underwater stealth.

6.
Phys Rev Appl ; 18(2)2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36600893

RESUMEN

Airy beams are peculiar beams that are non-diffracting, self-accelerating, and self-healing, and they have offered great opportunities for ultrasound beam manipulation. However, one critical barrier that limits the broad applications of Airy beams in ultrasound is the lack of simply built device to generate Airy beams in water. This work presents a family of Airy beam-enabled binary acoustic metasurfaces (AB-BAMs) to generate Airy beams for underwater ultrasound beam manipulation. AB-BAMs are designed and fabricated by 3D printing with two coding bits: a polylactic acid (which is the commonly used 3D printing material) unit acting as a bit "1" and a water unit acting as a bit "0". The distribution of the binary units on the metasurface is determined by the pattern of Airy beam. To showcase the wavefront engineering capability of the AB-BAMs, several examples of AB-BAMs are designed, 3D printed, and coupled with a planar single-element ultrasound transducer for experimental validation. We demonstrate the capability of AB-BAMs in flexibly tuning the focal region size and beam focusing in 3D space by changing the design of the AB-BAMs. The focal depth of AB-BAMs can be continuous and electronical tuned by adjusting the operating frequency of the planar transducer without replacing the AB-BAMs. The superimposing method is leveraged to enable the generation of complex acoustic fields, e.g., multi-foci and letter patterns (e.g., "W" and "U"). The more complex focal patterns are shown to be also continuously steerable by simply adjusting the operating frequency. Furthermore, the proposed 3D-printed AB-BAMs are simple to design, easy to fabricate, and low-cost to produce with the capabilities to achieve tunable focal size, flexible 3D beam focusing, arbitrary multipoint focusing, and continuous steerability, which creates unprecedented potential for ultrasound beam manipulation.

7.
Molecules ; 26(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209353

RESUMEN

Acoustic metamaterials are materials with artificially designed structures, which have characteristics that surpass the behavior of natural materials, such as negative refraction, anomalous Doppler effect, plane focusing, etc. This article mainly introduces and summarizes the related research progress of acoustic metamaterials in the past two decades, focusing on meta-atomic acoustic metamaterials, metamolecular acoustic metamaterials, meta-atomic clusters and metamolecule cluster acoustic metamaterials. Finally, the research overview and development trend of acoustic metasurfaces are briefly introduced.

8.
Sci Bull (Beijing) ; 65(5): 373-379, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659228

RESUMEN

Broadband sound sink/absorber via a structure with deep sub-wavelength thickness is of great and continuing interest in physics and engineering communities. An intuitive technique extensively used is to combine components (resonators) with quasi-perfect absorption to piece together a broad absorbing band, but the requirement of quasi-perfect absorption substantially places a very strict restriction on the impedance and thickness of the components. Here, we theoretically and experimentally demonstrate that a compact broadband acoustic sink that quasi-perfectly absorbs broadband arriving sound waves can be achieved with coherently coupled "weak resonances" (resonant sound absorbing systems with low absorption peaks). Although each component exhibits rather low absorption peak alone, via manipulating the coherent coupling effect among the components, they collectively provide a remarkably improved performance over a wide frequency range with a significantly compressed thickness. To illustrate the design principle, a hybrid metasurface utilizing the coaction of parallel and cascade couplings is presented, which possesses an average absorption coefficient of 0.957 in the quasi-perfect band (α>0.9) from 870 to 3224 Hz with a thickness of only 3.9 cm. Our results open new avenues for the development of novel and highly efficient acoustic absorbers against low frequency noise, and more essentially, suggest an efficient approach towards on-demand acoustic impedance engineering in broadband.

9.
Materials (Basel) ; 12(9)2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31085986

RESUMEN

We present an acoustic metamaterial (AMM) consisting of a dumbbell-shaped split hollow sphere (DSSHS). Transmission results of experiments and simulations both presented a transmitted dip at the resonant frequency of AMM, which demonstrated its negative modulus property. As the two split holes in the DSSHS had strong coupling effects for the acoustic medium in the local region, the dip could be simply manipulated by tuning the distance between the split holes. When the distance was large enough, the mutual inductance tended to disappear, and a weak interaction existed in the structure. According to the property of weak interaction, a multiband AMM and a broadband AMM with a negative modulus could be achieved by arraying DSSHS clusters with different distances. Furthermore, mutual inductance and coupling in DSSHS reinforced the local resonance, and this kind of cell could be used to design the acoustic metasurface to abnormally control the refractive waves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA