Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 721
Filtrar
1.
Sci Rep ; 14(1): 21371, 2024 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266573

RESUMEN

Atherosclerosis (AS) is a major cause of cardiovascular diseases that may lead to mortality. This study aimed to evaluate the therapeutic potential of tetrandrine in high cholesterol diet (HCD)-induced atherosclerosis, in rats, via modulation of miR-34a, as well as, Wnt5a/Ror2/ABCA1/NF-κB pathway and to compare its efficacy with atorvastatin. Induction of AS, in male rats, was done via IP administration of vitamin D3 (70 U/Kg for 3 days) together with HCD. At the end of the 9th week, rats were treated with atorvastatin at a dose of 20 mg/kg, and tetrandrine at different doses of (18.75, and 31.25 mg/kg) for 22 days. Serum inflammatory cytokines and lipid profile, liver oxidative stress parameters, and aortic tissue Wnt5a, Ror2, ABCA1, NF-κB, miR-34a levels were assessed in all experimental groups. Histopathological and Immunohistochemical assessments of aortic tissue sections were done. Results showed that tetrandrine treatment reverted the inflammatory and oxidative stress state together with reducing the serum lipids via modulating miR-34a, and Wnt5a/Ror2/ABCA1/NF-κB pathway. Moreover, it reverted the histopathological abnormalities observed in AS rats. Tetrandrine beneficial effects, in both doses, were comparable to that of atorvastatin, in most of the discussed parameters. These findings praise tetrandrine as a promising agent for management of atherosclerosis.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Aterosclerosis , Bencilisoquinolinas , MicroARNs , FN-kappa B , Proteína Wnt-5a , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Aterosclerosis/patología , Proteína Wnt-5a/metabolismo , Ratas , FN-kappa B/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Masculino , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Estrés Oxidativo/efectos de los fármacos , Colecalciferol/farmacología , Transducción de Señal/efectos de los fármacos , Ratas Wistar , Dieta Alta en Grasa/efectos adversos , Colesterol en la Dieta/efectos adversos
2.
Nutrients ; 16(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39275180

RESUMEN

Dysfunction or loss of pancreatic ß cells can cause insulin deficiency and impaired glucose regulation, resulting in conditions like type 2 diabetes. The ATP-binding cassette transporter A1 (ABCA1) plays a key role in the reverse cholesterol transport system, and its decreased expression is associated with pancreatic ß cell lipotoxicity, resulting in abnormal insulin synthesis and secretion. Increased glutamate release can cause glucotoxicity in ß cells, though the detailed mechanisms remain unclear. This study investigated the effect of N-methyl-D-aspartic acid (NMDA) on ABCA1 expression in INS-1 cells and primary pancreatic islets to elucidate the signaling mechanisms that suppress insulin secretion. Using Western blotting, microscopy, and biochemical analyses, we found that NMDA activated the mitogen-activated protein kinase (MEK)-dependent pathway, suppressing ABCA1 protein and mRNA expression. The MEK-specific inhibitor PD98059 restored ABCA1 promoter activity, indicating the involvement of the extracellular signal-regulated kinase (MEK/ERK) pathway. Furthermore, we identified the liver X receptor (LXR) as an effector transcription factor in NMDA regulation of ABCA1 transcription. NMDA treatment increased cholesterol and triglyceride levels while decreasing insulin secretion, even under high-glucose conditions. These effects were abrogated by treatment with PD98059. This study reveals that NMDA suppresses ABCA1 expression via the MEK/ERK/LXR pathway, providing new insights into the pathological suppression of insulin secretion in pancreatic ß cells and emphasizing the importance of investigating the role of NMDA in ß cell dysfunction.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Células Secretoras de Insulina , Receptores X del Hígado , Sistema de Señalización de MAP Quinasas , N-Metilaspartato , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Animales , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , N-Metilaspartato/farmacología , Ratas , Receptores X del Hígado/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Colesterol/metabolismo , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Masculino , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Línea Celular
3.
Mol Brain ; 17(1): 61, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223647

RESUMEN

Ischemic stroke (IS) is a severe cerebrovascular disease with high disability and mortality rates, where the inflammatory response is crucial to its progression and prognosis. Efferocytosis, the prompt removal of dead cells, can reduce excessive inflammation after IS injury. While electroacupuncture (EA) has been shown to decrease inflammation post-ischemia/reperfusion (I/R), its link to efferocytosis is unclear. Our research identified ATP-binding cassette transporter A1 (Abca1) as a key regulator of the engulfment process of efferocytosis after IS by analyzing public datasets and validating findings in a mouse model, revealing its close ties to IS progression. We demonstrated that EA can reduce neuronal cell death and excessive inflammation caused by I/R. Furthermore, EA treatment increased Abca1 expression, prevented microglia activation, promoted M2 microglia polarization, and enhanced their ability to phagocytose injured neurons in I/R mice. This suggests that EA's modulation of efferocytosis could be a potential mechanism for reducing cerebral I/R injury, making regulators of efferocytosis steps a promising therapeutic target for EA benefits.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Electroacupuntura , Inflamación , Ratones Endogámicos C57BL , Microglía , Fagocitosis , Daño por Reperfusión , Animales , Microglía/metabolismo , Microglía/patología , Electroacupuntura/métodos , Transportador 1 de Casete de Unión a ATP/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/terapia , Daño por Reperfusión/metabolismo , Inflamación/patología , Masculino , Isquemia Encefálica/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Ratones , Neuronas/metabolismo , Neuronas/patología , Modelos Animales de Enfermedad , Eferocitosis
4.
Front Cardiovasc Med ; 11: 1441123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257845

RESUMEN

Background: Thoracic Aortic Dissection (TAD) is a life-threatening disease without effective drug treatments. The disruption of HASMCs homeostasis is one direct histopathologic alteration in TAD pathological process. Several miRNAs have been shown abnormally expressed in TAD and to regulate HASMCs homeostasis. The primary goal of this study is to identify the miRNAs and the specific mechanisms that lead to HASMCs homeostasis disruption. Methods: Bulk miRNA sequencing was performed to explore the aberrantly expressed miRNA profile in TAD, and differentially expressed miRNAs were verified with qRT-PCR. To explore the role of the key miRNAs (miR-3529) in HASMCs homeostasis, we overexpressed this miRNA with lentivirus in HASMCs. Integrative transcriptomics and metabolomics analysis were used to uncover the functional roles of this miRNA in regulating HASMCs homeostasis. Further, the target gene of miR-3529 was predicted by bioinformatics and verified through a dual-luciferase reporter assay. Results: Bulk miRNA sequencing showed miR-3529 was elevated in TAD tissues and confirmed by qRT-PCR. Further experimental assay revealed miR-3529 upregulation induced HASMCs homeostasis disruption, accompanied by reducing contractile markers and increasing pro-inflammatory cytokines. Integrative transcriptomics and metabolomics analysis showed that miR-3529 overexpression altered the metabolic profile of HASMC, particularly lipid metabolism. ABCA1 was found to be a direct target of miR-3529. Mechanistically, the miR-3529/ABCA1 axis disrupted HASMCs homeostasis through the JAK2/STAT3 signaling pathway. Conclusions: miR-3529 is elevated in TAD patients and disrupts HASMCs homeostasis by reprogramming metabolism through the JAK2/STAT3 signaling pathway. These findings favor a role for miR-3529 as a novel target for TAD therapy.

5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(8): 159546, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39089642

RESUMEN

ABCA1 plays an essential role in the formation of high-density lipoprotein (HDL), and its mutations cause Tangier disease (TD), a familial HDL deficiency. In addition to the disappearance of HDL, TD patients exhibit cholesterol deposition in peripheral tissues through a mechanism poorly understood, which may contribute to the development of premature atherosclerosis. We and others previously showed that ABCA1 deficiency causes hyperactivation of the SREBP2 pathway in vitro. Here, we show using Abca1 knockout mice that ABCA1 deficiency leads to tissue-specific dysregulation of SREBP2 activity in a nutritional status-dependent manner, which may underlie the pathophysiology of TD.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Transducción de Señal , Enfermedad de Tangier , Animales , Humanos , Ratones , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/deficiencia , Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Enfermedad de Tangier/genética , Enfermedad de Tangier/metabolismo , Enfermedad de Tangier/patología
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167479, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39181516

RESUMEN

Intracellular cholesterol metabolism is regulated by the SREBP-2 and LXR signaling pathways. The effects of inflammation on these molecular mechanisms remain poorly studied, especially at the blood-brain barrier (BBB) level. Tumor necrosis factor α (TNFα) is a proinflammatory cytokine associated with BBB dysfunction. Therefore, the aim of our study was to investigate the effects of TNFα on BBB cholesterol metabolism, focusing on its underlying signaling pathways. Using a human in vitro BBB model composed of human brain-like endothelial cells (hBLECs) and brain pericytes (HBPs), we observed that TNFα increases BBB permeability by degrading the tight junction protein CLAUDIN-5 and activating stress signaling pathways in both cell types. TNFα also promotes cholesterol release and decreases cholesterol accumulation and APOE secretion. In hBLECs, the expression of SREBP-2 targets (LDLR and HMGCR) is increased, while ABCA1 expression is decreased. In HBPs, only LDLR and ABCA1 expression is increased. TNFα treatment also induces 25-hydroxycholesterol (25-HC) production, a cholesterol metabolite involved in the immune response and intracellular cholesterol metabolism. 25-HC pretreatment attenuates TNFα-induced BBB leakage and partially alleviates the effects of TNFα on ABCA1, LDLR, and HMGCR expression. Overall, our results suggest that TNFα favors cholesterol efflux via an LXR/ABCA1-independent mechanism at the BBB, while it activates the SREBP-2 pathway. Treatment with 25-HC partially reversed the effect of TNFα on the LXR/SREBP-2 pathways. Our study provides novel perspectives for better understanding cerebrovascular signaling events linked to BBB dysfunction and cholesterol metabolism in neuroinflammatory diseases.


Asunto(s)
Barrera Hematoencefálica , Colesterol , Células Endoteliales , Hidroxicolesteroles , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Factor de Necrosis Tumoral alfa , Hidroxicolesteroles/farmacología , Hidroxicolesteroles/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Colesterol/metabolismo , Receptores de LDL/metabolismo , Receptores de LDL/genética , Transducción de Señal/efectos de los fármacos , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Pericitos/metabolismo , Pericitos/efectos de los fármacos , Pericitos/patología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Células Cultivadas
7.
Lipids Health Dis ; 23(1): 275, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210350

RESUMEN

Despite recent findings indicating a paradoxical association between high-density lipoprotein cholesterol (HDL-C) levels and cardiovascular disease (CVD) mortality, the impact of HDL-C on subsequent outcomes after ischemic stroke remains unclear. The study aims to investigate the relationships between HDL-C levels and post-stroke functional outcomes while examining the potential modifying influence of HDL-C-related single nucleotide polymorphisms identified through genome-wide association studies. This cohort study included 1,310 patients diagnosed with acute ischemic stroke (AIS), all of whom had their admission serum lipid profile and genotyping information. Participants were categorized into four groups based on gender and HDL-C level. Prognostic outcomes were assessed using a modified Rankin Scale (mRS) at 1, 3, and 12 months post-admission. Multivariate logistic regression and restricted cubic spline regression analysis were used to assess the associations between HDL-C levels and outcomes. The mean age of patients was 61.17 ± 12.08 years, and 69.31% were men. After adjusting confounders, patients with the highest HDL-C level group had a significantly higher risk of poor functional outcomes at 1, 3, and 12 months following stroke compared to the reference group. Restricted cubic splines depicted a nonlinear association between HDL-C levels and poor prognosis in both men and women. The ABCA1 gene rs2575876 AA genotype combined with abnormal HDL-C levels exhibited a significantly heightened risk of post-stroke adverse outcomes at 1 and 3 months compared to patients with normal HDL-C levels and GG + GA genotype. These findings suggest that the combined effects of ABCA1 genetic variants with either low or high HDL-C levels could further heighten this risk.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , HDL-Colesterol , Accidente Cerebrovascular Isquémico , Polimorfismo de Nucleótido Simple , Humanos , Masculino , Femenino , Persona de Mediana Edad , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/sangre , Anciano , HDL-Colesterol/sangre , Transportador 1 de Casete de Unión a ATP/genética , Taiwán , Pronóstico , Lipoproteínas HDL/sangre , Lipoproteínas HDL/genética , Factores de Riesgo , Genotipo
8.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39201292

RESUMEN

MicroRNAs (miRs) are small non-coding RNAs that regulate gene expression post-transcriptionally and are crucial in lipid metabolism. ATP-binding cassette transporter A1 (ABCA1) is essential for cholesterol efflux from cells to high-density lipoprotein (HDL). Dysregulation of miRs targeting ABCA1 can affect cholesterol homeostasis and contribute to coronary artery disease (CAD). This study aimed to investigate the expression of miRs targeting ABCA1 in human monocytes, their role in cholesterol efflux, and their relationship with CAD. We included 50 control and 50 CAD patients. RT-qPCR examined the expression of miR-33a-5p, miR-26a-5p, and miR-144-3p in monocytes. Logistic regression analysis explored the association between these miRs and CAD. HDL's cholesterol acceptance was analyzed using the J774A.1 cell line. Results showed that miR-26a-5p (p = 0.027) and ABCA1 (p = 0.003) expression levels were higher in CAD patients, while miR-33a-5p (p < 0.001) levels were lower. Downregulation of miR-33a-5p and upregulation of ABCA1 were linked to a lower CAD risk. Atorvastatin upregulated ABCA1 mRNA, and metformin downregulated miR-26a-5p in CAD patients. Decreased cholesterol efflux correlated with higher CAD risk and inversely with miRs in controls. Reduced miR-33a-5p expression and increased ABCA1 expression are associated with decreased CAD risk. miR deregulation in monocytes may influence atherosclerotic plaque formation by regulating cholesterol efflux. Atorvastatin and metformin could offer protective effects by modulating miR-33a-5p, miR-26a-5p, and ABCA1, suggesting potential therapeutic strategies for CAD prognosis and treatment.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Enfermedad de la Arteria Coronaria , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/sangre , Masculino , Femenino , Persona de Mediana Edad , Leucocitos Mononucleares/metabolismo , Regulación de la Expresión Génica , Anciano , Línea Celular , Colesterol/metabolismo , Colesterol/sangre , Monocitos/metabolismo
9.
Phytomedicine ; 133: 155944, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39146879

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) remains a significant challenge in cancer therapy, especially due to its resistance to established treatments like Gemcitabine, necessitating novel therapeutic approaches. METHODS: This study utilized Gemcitabine-resistant cell lines, patient-derived organotypic tumor spheroids (PDOTs), and patient-derived xenografts (PDX) to evaluate the effects of Saikosaponin-a (SSA) on ICC cellular proliferation, migration, apoptosis, and its potential synergistic interaction with Gemcitabine. Techniques such as transcriptome sequencing, Luciferase reporter assays, and molecular docking were employed to unravel the molecular mechanisms. RESULTS: SSA exhibited antitumor effects in both in vitro and PDX models, indicating its considerable potential for ICC treatment. SSA markedly inhibited ICC progression by reducing cellular proliferation, enhancing apoptosis, and decreasing migration and invasion. Crucially, it augmented Gemcitabine's efficacy by targeting the p-AKT/BCL6/ABCA1 signaling pathway. This modulation led to the downregulation of p-AKT and suppression of BCL6 transcriptional activity, ultimately reducing ABCA1 expression and enhancing chemosensitivity to Gemcitabine. Additionally, ABCA1 was validated as a predictive biomarker for drug resistance, with a direct correlation between ABCA1 expression levels and the IC50 values of various small molecule drugs in ICC gene profiles. CONCLUSION: This study highlights the synergistic potential of SSA combined with Gemcitabine in enhancing therapeutic efficacy against ICC and identifies ABCA1 as a key biomarker for drug responsiveness. Furthermore, the introduction of the novel PDOTs microfluidic model provides enhanced insights into ICC research. This combination strategy may provide a novel approach to overcoming treatment challenges in ICC.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Desoxicitidina , Resistencia a Antineoplásicos , Gemcitabina , Ácido Oleanólico , Proteínas Proto-Oncogénicas c-akt , Saponinas , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Ácido Oleanólico/farmacología , Ácido Oleanólico/análogos & derivados , Saponinas/farmacología , Colangiocarcinoma/tratamiento farmacológico , Humanos , Línea Celular Tumoral , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Transportador 1 de Casete de Unión a ATP/metabolismo , Ratones , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sinergismo Farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Clin Immunol ; 267: 110351, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39216780

RESUMEN

Atherosclerosis is a cardiovascular disease caused by cholesterol-laden arterial plaques. This study evaluated the correlation between interleukin-6 (IL-6), its receptors (IL6R/CD126), and glycoprotein 130 (gp130) alongside atherosclerosis biomarkers in a cohort of 142 subjects, equally divided between lean and obese individuals. Subsequent analyses used THP-1-derived macrophages to assess the biochemical impact of inhibiting IL-6 receptors. IL-6 secretion increased with atherosclerosis in obese subjects, while IL6R/CD126 and gp130 on monocytes decreased. Pharmacological gp130 inhibition altered lipid metabolism, increasing LDLR gene expression and cholesterol synthesis via SREBF2 and mevalonate kinase, along with HMG-CoA reductase at protein levels. gp130-deficient cells produced more cholesterol and had lower ABCA1 levels, suggesting hindered cholesterol efflux. Filipin III staining confirmed cholesterol retention in gp130-inhibited cells. Ex-vivo investigation on lean PBMCs further defined the impact of gp130 inhibition on the reduction of cholesterol efflux. Our results indicates gp130 is crucial for macrophage reverse cholesterol transport and may be a target for atherosclerosis treatments.


Asunto(s)
Aterosclerosis , Colesterol , Receptor gp130 de Citocinas , Macrófagos , Receptores de Interleucina-6 , Humanos , Colesterol/metabolismo , Macrófagos/metabolismo , Receptor gp130 de Citocinas/metabolismo , Masculino , Femenino , Aterosclerosis/metabolismo , Persona de Mediana Edad , Receptores de Interleucina-6/metabolismo , Interleucina-6/metabolismo , Transducción de Señal , Células THP-1 , Obesidad/metabolismo , Adulto , Transporte Biológico , Metabolismo de los Lípidos , Receptores de LDL/metabolismo
11.
J Exp Clin Cancer Res ; 43(1): 219, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39107857

RESUMEN

BACKGROUND: In non-small cell lung cancer (NSCLC) the efficacy of chemo-immunotherapy is affected by the high expression of drug efflux transporters as ABCC1 and by the low expression of ABCA1, mediating the isopentenyl pyrophosphate (IPP)-dependent anti-tumor activation of Vγ9Vδ2 T-lymphocytes. In endothelial cells ABCA1 is a predicted target of the transcription factor EB (TFEB), but no data exists on the correlation between TFEB and ABC transporters involved in the chemo-immuno-resistance in NSCLC. METHODS: The impact of TFEB/ABCC1/ABCA1 expression on NSCLC patients' survival was analyzed in the TCGA-LUAD cohort and in a retrospective cohort of our institution. Human NSCLC cells silenced for TFEB (shTFEB) were analyzed for ABC transporter expression, chemosensitivity and immuno-killing. The chemo-immuno-sensitizing effects of nanoparticles encapsulating zoledronic acid (NZ) on shTFEB tumors and on tumor immune-microenvironment were evaluated in Hu-CD34+ mice by single-cell RNA-sequencing. RESULTS: TFEBlowABCA1lowABCC1high and TFEBhighABCA1highABCC1low NSCLC patients had the worst and the best prognosis, respectively, in the TCGA-LUAD cohort and in a retrospective cohort of patients receiving platinum-based chemotherapy or immunotherapy as first-line treatment. By silencing shTFEB in NSCLC cells, we demonstrated that TFEB was a transcriptional inducer of ABCA1 and a repressor of ABCC1. shTFEB cells had also a decreased activity of ERK1/2/SREBP2 axis, implying reduced synthesis and efflux via ABCA1 of cholesterol and its intermediate IPP. Moreover, TFEB silencing reduced cholesterol incorporation in mitochondria: this event increased the efficiency of OXPHOS and the fueling of ABCC1 by mitochondrial ATP. Accordingly, shTFEB cells were less immuno-killed by the Vγ9Vδ2 T-lymphocytes activated by IPP and more resistant to cisplatin. NZ, which increased IPP efflux but not OXPHOS and ATP production, sensitized shTFEB immuno-xenografts, by reducing intratumor proliferation and increasing apoptosis in response to cisplatin, and by increasing the variety of anti-tumor infiltrating cells (Vγ9Vδ2 T-lymphocytes, CD8+T-lymphocytes, NK cells). CONCLUSIONS: This work suggests that TFEB is a gatekeeper of the sensitivity to chemotherapy and immuno-killing in NSCLC, and that the TFEBlowABCA1lowABCC1high phenotype can be predictive of poor response to chemotherapy and immunotherapy. By reshaping both cancer metabolism and tumor immune-microenvironment, zoledronic acid can re-sensitize TFEBlow NSCLCs, highly resistant to chemo- and immunotherapy.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Animales , Femenino , Inmunoterapia/métodos , Línea Celular Tumoral , Masculino , Estudios Retrospectivos
12.
Biotechniques ; 76(8): 405-410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39016203

RESUMEN

Adipocyte characterization and assessing membrane proteins using flow cytometry has been proven to be challenging as adipocytes are fragile, especially in subjects with high BMI. We overcame these challenges through a protocol optimizing tissue digestion time by reducing intermediate steps to minimize adipocyte friction and breakage. We avoided requirement for specialized instrument configuration and used a modified gating strategy to prevent inclusion of lipid droplets during analysis. Up to 90% of the cell population were available in the gating area. We checked the expression level of ABCA1, a membrane protein reaffirming adipocyte selection. In summary, this protocol requires lesser tissue sample improving feasibility and cost efficiency. Thus, our flow cytometry method is an improvement for studying adipocyte membrane characteristics.


Adipocyte characterization and assessing membrane proteins using flow cytometry has been challenging as adipocytes are fragile, especially in high BMI subjects. By lowering the adipocyte friction at multiple steps, the protocol significantly reduces the adipocyte breakage, which is a critical concern for the big and fragile adipocytes. We modified the standard adipocyte isolation and flow cytometry protocol on a flow analyzer. We reduced the number of steps and made it more user-friendly, without the requirement for any specific instrument add-ons.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Adipocitos , Citometría de Flujo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Citometría de Flujo/métodos , Adipocitos/metabolismo , Adipocitos/citología , Humanos , Animales , Ratones
13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159533, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39009241

RESUMEN

Macrophage lipid accumulation indicates a pathological change in atherosclerosis. Ilexgenin A (IA), a pentacyclic triterpenoid compound, plays a role in preventing inflammation, bacterial infection, and fatty liver and induces a potential anti-atherogenic effect. However, the anti-atherosclerotic mechanism remains unclear. The present study investigated the effects of IA on lipid accumulation in macrophage-derived foam cells and atherogenesis in apoE-/- mice. Our results indicated that the expression of adenosine triphosphate-binding cassette transporter A1 (ABCA1) was up-regulated by IA, promoting cholesterol efflux and reducing lipid accumulation in macrophages, which may be regulated by the protein tyrosine phosphatase non-receptor type 2 (PTPN2)/ERK1/2 signalling pathway. IA attenuated the progression of atherosclerosis in high-fat diet-fed apoE-/- mice. PTPN2 knockdown with siRNA or treatment with an ERK1/2 agonist (Ro 67-7476) impeded the effects of IA on ABCA1 upregulation and cholesterol efflux in macrophages. These results suggest that IA inhibits macrophage lipid accumulation and alleviates atherosclerosis progression via the PTPN2/ERK1/2 signalling pathway.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Aterosclerosis , Metabolismo de los Lípidos , Sistema de Señalización de MAP Quinasas , Macrófagos , Proteína Tirosina Fosfatasa no Receptora Tipo 2 , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Masculino , Triterpenos/farmacología , Colesterol/metabolismo , Células Espumosas/metabolismo , Células Espumosas/efectos de los fármacos , Células Espumosas/patología , Ratones Endogámicos C57BL , Progresión de la Enfermedad , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos
14.
J Transl Med ; 22(1): 659, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010173

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is characterized by extensive demyelination and inflammatory responses. Facilitating the clearance of lipid droplets (LDs) within microglia contributes to creating a microenvironment that favors neural recovery and provides essential materials for subsequent remyelination. Therefore, investigating MicroRNAs (miRNAs) that regulate lipid homeostasis after SCI and elucidating their potential mechanisms in promoting LDs clearance in microglia have become focal points of SCI research. METHODS: We established a subacute C5 hemicontusion SCI model in mice and performed transcriptomic sequencing on the injury epicenter to identify differentially expressed genes and associated pathways. Confocal imaging was employed to observe LDs accumulation. Multi-omics analyses were conducted to identify differentially expressed mRNA and miRNA post-SCI. Pathway enrichment analysis and protein-protein interaction network construction were performed using bioinformatics methods, revealing miR-223-Abca1 as a crucial miRNA-mRNA pair in lipid metabolism regulation. BV2 microglia cell lines overexpressing miR-223 were engineered, and immunofluorescence staining, western blot, and other techniques were employed to assess LDs accumulation, relevant targets, and inflammatory factor expression, confirming its role in regulating lipid homeostasis in microglia. RESULTS: Histopathological results of our hemicontusion SCI model confirmed LDs aggregation at the injury epicenter, predominantly within microglia. Our transcriptomic analysis during the subacute phase of SCI in mice implicated ATP-binding cassette transporter A1 (Abca1) as a pivotal gene in lipid homeostasis, cholesterol efflux and microglial activation. Integrative mRNA-miRNA multi-omics analysis highlighted the crucial role of miR-223 in the neuroinflammation process following SCI, potentially through the regulation of lipid metabolism via Abca1. In vitro experiments using BV2 cells overexpressing miR-223 demonstrated that elevated levels of miR-223 enhance ABCA1 expression in myelin debris and LPS-induced BV2 cells. This promotes myelin debris degradation and LDs clearance, and induces a shift toward an anti-inflammatory M2 phenotype. CONCLUSIONS: In summary, our study unveils the critical regulatory role of miR-223 in lipid homeostasis following SCI. The mechanism by which this occurs involves the upregulation of ABCA1 expression, which facilitates LDs clearance and myelin debris degradation, consequently alleviating the lipid burden, and inhibiting inflammatory polarization of microglia. These findings suggest that strategies to enhance miR-223 expression and target ABCA1, thereby augmenting LDs clearance, may emerge as appealing new clinical targets for SCI treatment.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Gotas Lipídicas , Ratones Endogámicos C57BL , MicroARNs , Microglía , Traumatismos de la Médula Espinal , Regulación hacia Arriba , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , MicroARNs/metabolismo , MicroARNs/genética , Microglía/metabolismo , Microglía/patología , Animales , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Gotas Lipídicas/metabolismo , Ratones , Línea Celular , Masculino , Metabolismo de los Lípidos/genética
15.
Methods Mol Biol ; 2816: 205-222, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977601

RESUMEN

The role of lipid metabolic pathways in the pathophysiology of primary open-angle glaucoma (POAG) has been thoroughly elucidated, with pathways involved in lipid-related disorders such as hypercholesterolemia and hyperlipoprotein accumulation being of particular interest. The ABCA1/apoA-1 transduction pathway moderates reverse cholesterol transport (RCT), facilitating the transport of free cholesterol (FC) and phospholipids (PL) and preventing intracellular lipid aggregates in retinal ganglion cells (RGCs) due to excess FCs and PLs. A deficiency of ABCA1 transporters, and thus, dysregulation of the ABCA1/apoA-1 transduction pathway, may potentiate cellular lipid accumulation, which affects the structural and mechanical features of the cholesterol-rich RGC membranes. Atomic force microscopy (AFM) is a cutting-edge imaging technique suitable for imaging topographical surfaces of a biological specimen and determining its mechanical properties and structural features. The versatility and precision of this technique may prove beneficial in understanding the effects of ABCA1/apoA-1 pathway downregulation and decreased cholesterol efflux in RGCs and their membranes. In this protocol, ABCA1-/- RGC mouse models are prepared over the course of 3 days and are then compared with non-knockout ABCA1 RGC mouse models through AFM imaging of topographical surfaces to examine the difference in membrane dynamics of knockout vs. non-knockout models. Intracellular and extracellular levels of lipids are quantified through high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS).


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Apolipoproteína A-I , Lipidómica , Microscopía de Fuerza Atómica , Transducción de Señal , Microscopía de Fuerza Atómica/métodos , Animales , Ratones , Transportador 1 de Casete de Unión a ATP/metabolismo , Apolipoproteína A-I/metabolismo , Lipidómica/métodos , Colesterol/metabolismo , Ratones Noqueados , Metabolismo de los Lípidos
16.
Turk J Pharm Sci ; 21(3): 219-223, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994830

RESUMEN

Objectives: Endometrial carcinoma (EC) is a typical gynecological malignant tumor that occurs more frequently every year. Obesity is a significant contributor to the development of EC and its prognosis. Lipid metabolism and malignant tumors have a long history of association. Elevated cholesterol levels are made possible by adenosine triphosphate-binding cassette protein A1 (ABCA1) deficiency, which eventually promotes cancer cell survival. The aim of this study was to examine at the ABCA1 gene expression levels in EC patients. The relationship between ABCA1 and the occurrence, progression, and prognosis of EC is discussed in this article as a potential mechanism. Materials and Methods: The samples of 45 endometrial adenocarcinoma patients were retrospectively included in this study and they were further divided into Grade 1 (15), Grade 2 (15), Grade 3 (15) tumors, control group. Twenty-nine endometrial tissues without a confirmed diagnosis of endometrial cancer made up the control group. ABCA1 gene expression was examined using real-time polymerase chain reaction. Results: According to the results, the gene expressions of the patient group were higher than the control group When each Grade was compared with the control group, statistically significant results were obtained. After analyzing the data, it was found that the patient group was generally higher than the control group (p < 0.05) and there were differences in the grades of the patient group (p < 0.05). When the ABCA1 expressions of the grade groups and control groups were compared separately, a difference was found between Grade 1, Grade 2 and Grade 3 and the control group (p= 0.0001). Conclusion: According to the findings of our study, a key component in the growth of EC tumors is the increase in cholesterol production caused by a reduction in ABCA1.

17.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062791

RESUMEN

Obesity is frequently accompanied by non-alcoholic fatty liver disease (NAFLD). These two diseases are associated with altered lipid metabolism, in which reverse cholesterol transport (LXRα/ABCA1/ABCG1) and leptin response (leptin receptor (Ob-Rb)/Sam68) are involved. The two pathways were evaluated in peripheral blood mononuclear cells (PBMCs) from 86 patients with morbid obesity (MO) before and six months after Roux-en-Y gastric bypass (RYGB) and 38 non-obese subjects. In the LXRα pathway, LXRα, ABCA1, and ABCG1 mRNA expressions were decreased in MO compared to non-obese subjects (p < 0.001, respectively). Ob-Rb was decreased (p < 0.001), whereas Sam68 was increased (p < 0.001) in MO. RYGB did not change mRNA gene expressions. In the MO group, the LXRα pathway (LXRα/ABCA1/ABCG1) negatively correlated with obesity-related variables (weight, body mass index, and hip), inflammation (C-reactive protein), and liver function (alanine-aminotransferase, alkaline phosphatase, and fatty liver index), and positively with serum albumin. In the Ob-R pathway, Ob-Rb and Sam68 negatively correlated with alanine-aminotransferase and positively with albumin. The alteration of LXRα and Ob-R pathways may play an important role in NAFLD development in MO. It is possible that MO patients may require more than 6 months following RYBGB to normalize gene expression related to reverse cholesterol transport or leptin responsiveness.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Colesterol , Leucocitos Mononucleares , Receptores X del Hígado , Hígado , Obesidad Mórbida , Receptores de Leptina , Humanos , Obesidad Mórbida/metabolismo , Obesidad Mórbida/cirugía , Obesidad Mórbida/genética , Masculino , Leucocitos Mononucleares/metabolismo , Femenino , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Adulto , Colesterol/metabolismo , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Persona de Mediana Edad , Hígado/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Transducción de Señal , Transporte Biológico , Regulación de la Expresión Génica , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética
18.
Gene ; 927: 148705, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38901534

RESUMEN

BACKGROUND: The adenosine triphosphate-binding cassette transporter A1 (ABCA1) is closely linked to various aspects of the regulation of whole-body cholesterol metabolism and atherosclerosis formation. The object of the study was to investigate the association between rs1800977 and rs2230806 polymorphisms in the ABCA1 gene and myocardial infarction (MI) in Slovenian subjects with type 2 diabetes mellitus (T2DM). METHODS: 1590 T2DM patients (484 subjects with MI and 1106 controls) were included in this retrospective cross-sectional case-control study. After genotyping, Pearson χ2 test was used to compare the distribution of genotypes and alleles among the two groups. Logistic regression analysis adjusted for several risk factors for MI was performed. RESULTS: Genotype distribution showed significant association with MI in T2DM subjects for both selected polymorphisms in ABCA1 gene (p = 0.009 for rs2230806 and p = 0.042 for rs1800977). After applying corrections for confounding variables like age, waist circumference, diastolic blood pressure, serum high-density lipoprotein levels, gender and smoking several genetic models still showed significant associations with MI (dominant model for rs2230806 and dominant, overdominant and co-dominant for rs1800977). CONCLUSION: Our study showed that presence of the T allele of the rs2230806 ABCA1 gene is associated with higher risk of MI, while the A allele of the rs1800977 conferred protection against MI in Slovenian T2DM subjects.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Diabetes Mellitus Tipo 2 , Predisposición Genética a la Enfermedad , Infarto del Miocardio , Polimorfismo de Nucleótido Simple , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Transportador 1 de Casete de Unión a ATP/genética , Masculino , Femenino , Infarto del Miocardio/genética , Persona de Mediana Edad , Eslovenia , Estudios de Casos y Controles , Anciano , Estudios Transversales , Estudios Retrospectivos , Factores de Riesgo , Genotipo , Alelos
19.
Artículo en Inglés | MEDLINE | ID: mdl-38842175

RESUMEN

Significance: Cholesterol plays a crucial role in the brain, where it is highly concentrated and tightly regulated to support normal brain functions. It serves as a vital component of cell membranes, ensuring their integrity, and acts as a key regulator of various brain processes. Dysregulation of cholesterol metabolism in the brain has been linked to impaired brain function and the onset of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease, and Huntington's disease. Recent Advances: A significant advancement has been the identification of astrocyte-derived apoliprotein E as a key regulator of de novo cholesterol biosynthesis in neurons, providing insights into how extracellular signals influence neuronal cholesterol levels. In addition, the development of antibody-based therapies, particularly for AD, presents promising opportunities for therapeutic interventions. Critical Issues: Despite significant research, the association between cholesterol and neurodegenerative diseases remains inconclusive. It is crucial to distinguish between plasma cholesterol and brain cholesterol, as these pools are relatively independent. This differentiation should be considered when evaluating statin-based treatment approaches. Furthermore, assessing not only the total cholesterol content in the brain but also its distribution among different types of brain cells is essential. Future Direction: Establishing a causal link between changes in brain/plasma cholesterol levels and the onset of brain dysfunction/neurodegenerative diseases remains a key objective. In addition, conducting cell-specific analyses of cholesterol homeostasis in various types of brain cells under pathological conditions will enhance our understanding of cholesterol metabolism in neurodegenerative diseases. Manipulating cholesterol levels to restore homeostasis may represent a novel approach for alleviating neurological symptoms.

20.
Future Sci OA ; 10(1): FSO979, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827789

RESUMEN

Aim: To clarify the alternation of gene expression responsible for resistance of Adriamycin (ADR) in rats, in addition to investigation of a novel promising drug-delivery system using titanium dioxide nanoparticles loaded with ADR (TiO2-ADR). Method: Breast cancer was induced in female Sprague-Dawley rats, followed by treatment with ADR (5 mg/kg) or TiO2-ADR (2 mg/kg) for 1 month. Results: Significant improvements in both zinc and calcium levels were observed with TiO2-ADR treatment. Gene expression of ATP-binding cassette transporter membrane proteins (ABCA1 & ABCG1), P53 and Jak-2 showed a significant reduction and overexpression of the C-myc in breast cancer-induced rats. TiO2-ADR demonstrated a notable ability to upregulate these genes. Conclusion: TiO2-ADR could be a promising drug-delivery system for breast cancer therapy.


The current study aimed to investigate a novel and promising drug-delivery system to overcome the resistance problem by loading Adriamycin (ADR) into titanium dioxide nanoparticles (TiO2). The study also aimed to clarify the changes in gene expression responsible for the development of ADR resistance, in a rat model. First, animals were divided into four groups of ten each. Breast cancer was induced in female Sprague-Dawley rats by administering two doses of DMBA (50 and 25 mg/kg), followed by treatment with ADR at a dose of 5 mg/kg for 1 month, or TiO2-ADR at a dose of 2 mg/kg for 1 month. Biochemical and molecular analyses were conducted. Zinc and calcium levels were found to significantly decrease after cancer induction. Treatment with ADR alone or in combination with TiO2 showed a significant improvement in both mineral levels, with the TiO2-ADR group showing superior results. Gene expression of ATP-binding cassette transporter membrane proteins (ABCA1 & ABCG1), P53 and Jak-2 showed a significant decrease after DMBA-induced breast cancer. However, both the ADR- and TiO2-ADR-treated groups showed a notable increase in gene expression, with the TiO2-ADR group showing the highest increase. On the other hand, there was a significant overexpression of the C-myc gene after DMBA-induced breast cancer. However, both ADR and TiO2-ADR treatments resulted in a notable decrease in C-myc gene expression. Based on the data, TiO2-ADR could be a promising drug-delivery system for breast cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA