Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Biotechnol J ; 19(9): e2400394, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39246125

RESUMEN

The development of liquid biopsy as a minimally invasive technique for tumor profiling has created a need for efficient biomarker extraction systems from body fluids. The analysis of circulating cell-free DNA (cfDNA) is especially promising, but the low amounts and high fragmentation of cfDNA found in plasma pose challenges to its isolation. While the potential of aqueous two-phase systems (ATPS) for the extraction and purification of various biomolecules has already been successfully established, there is limited literature on the applicability of these findings to short cfDNA-like fragments. This study presents the partitioning behavior of a 160 bp DNA fragment in polyethylene glycol (PEG)/salt ATPS at pH 7.4. The effect of PEG molecular weight, tie-line length, neutral salt additives, and phase volume ratio is evaluated to maximize DNA recovery. Selected ATPS containing a synthetic plasma solution spiked with human serum albumin and immunoglobulin G are tested to determine the separation of DNA fragments from the main plasma protein fraction. By adding 1.5% (w/w) NaCl to a 17.7% (w/w) PEG 400/17.3% (w/w) phosphate ATPS, 88% DNA recovery was achieved in the salt-rich bottom phase while over 99% of the protein was removed.


Asunto(s)
Polietilenglicoles , Polietilenglicoles/química , Humanos , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/química , Ácidos Nucleicos Libres de Células/aislamiento & purificación , Cloruro de Sodio/química , ADN/química , ADN/aislamiento & purificación , Polímeros/química , Biopsia Líquida/métodos , Sales (Química)/química
2.
Molecules ; 29(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39202854

RESUMEN

In recent years, the increasing need for energy conservation and environmental protection has driven industries to explore more efficient and sustainable processes. Liquid-liquid extraction (LLE) is a common method used in various sectors for separating components of liquid mixtures. However, the traditional use of toxic solvents poses significant health and environmental risks, prompting the shift toward green solvents. This review deals with the principles, applications, and advantages of aqueous two-phase systems (ATPS) as an alternative to conventional LLE. ATPS, which typically utilize water and nontoxic components, offer significant benefits such as high purity and single-step biomolecule extraction. This paper explores the thermodynamic principles of ATPS, factors influencing enzyme partitioning, and recent advancements in the field. Specific emphasis is placed on the use of ATPS for enzyme extraction, showcasing its potential in improving yields and purity while minimizing environmental impact. The review also highlights the role of ionic liquids and deep eutectic solvents in enhancing the efficiency of ATPS, making them viable for industrial applications. The discussion extends to the challenges of integrating ATPS into biotransformation processes, including enzyme stability and process optimization. Through comprehensive analysis, this paper aims to provide insights into the future prospects of ATPS in sustainable industrial practices and biotechnological applications.


Asunto(s)
Biotransformación , Enzimas , Extracción Líquido-Líquido , Extracción Líquido-Líquido/métodos , Enzimas/metabolismo , Enzimas/química , Enzimas/aislamiento & purificación , Solventes/química , Líquidos Iónicos/química , Agua/química , Termodinámica
3.
Int J Biol Macromol ; 275(Pt 2): 133581, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960262

RESUMEN

Secretory immunoglobulin A [sIgA] is a promising candidate for enteric therapeutics applications, and several sIgA-based constructs are currently being developed by groups utilizing clarified Chinese hamster ovary [CHO] cell culture supernatants. To the monoclonal antibody downstream processing typically entails chromatography-based purification processes beginning with Protein A chromatography. In this paper, aqueous two-phase systems [ATPS] were employed for the preliminary purification of secretory immunoglobulin A [sIgA] monoclonal antibody [mAb] from clarified CHO-cell culture supernatants. A 24 full factorial design was utilized. The influence of various process parameters such as pH, PEG molecular weight [MPEG], PEG concentration [CPEG], and phosphate salt concentration [CPHO], on the sIgA partition coefficient [K sIgA] and the recovery index [Y] in the PEG phase were evaluated. The Elisa assay revealed that, in the ATPS conditions tested, sIgA mAb was mostly detected in PEG upper phase. Run 14 with the highest sIgA activity exhibited the following conditions: MPEG 8.000 g/mol, CPEG 12,5 %, pH 7,0 and CPHO 10 %, and a sIgA K of 94.50 and a recovery index [Y] of 33.52 %. The proposed platform provides straightforward implementation, yields comparable results, and offers significantly improved economics for manufacturing sIgA mAb biotherapeutics.


Asunto(s)
Anticuerpos Monoclonales , Cricetulus , Inmunoglobulina A Secretora , Polietilenglicoles , Animales , Células CHO , Inmunoglobulina A Secretora/química , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/aislamiento & purificación , Polietilenglicoles/química , Medios de Cultivo/química , Concentración de Iones de Hidrógeno , Cricetinae , Agua/química
4.
ACS Biomater Sci Eng ; 10(6): 3896-3908, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38748191

RESUMEN

Microfluidic spinning is emerging as a useful technique in the fabrication of alginate fibers, enabling applications in drug screening, disease modeling, and disease diagnostics. In this paper, by capitalizing on the benefits of aqueous two-phase systems (ATPS) to produce diverse alginate fiber forms, we introduce an ATPS-Spinning platform (ATPSpin). This ATPS-enabled method efficiently circumvents the rapid clogging challenges inherent to traditional fiber production techniques by regulating the interaction between alginate and cross-linking agents like Ba2+ ions. By varying system parameters under the guidance of a regime map, our system produces several fiber forms─solid, hollow, and droplet-filled─consistently and reproducibly from a single device. We demonstrate that the resulting alginate fibers possess distinct features, including biocompatibility. We also encapsulate HEK293 cells in the microfibers as a proof-of-concept that this versatile microfluidic fiber generation platform may have utility in tissue engineering and regenerative medicine applications.


Asunto(s)
Alginatos , Alginatos/química , Humanos , Células HEK293 , Microfluídica/métodos , Microfluídica/instrumentación , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química
5.
Heliyon ; 10(4): e25245, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420455

RESUMEN

Background: Houttuynia cordata Thunb. has long been widely used as a daily vegetable and traditional medicine. The flavonoid component of H. cordata has plenty of pharmacological effects, such as antibacterial, anti-inflammatory, and antioxidant. In this study, we applied the aqueous two-phase system (ATPS) combined with ultrasonic extraction for extracting H. cordata leaves. Methods: We optimized the extraction process to improve the extraction efficiency of the two flavonoids, hyperin and quercitrin, by Surface Method Response - Central Composite Design (RSM-CCD). Next, we investigated the antibacterial ability of H. cordata ATPS extract from optimal conditions against two bacterial strains, Cutibacterium acnes and Staphylococcus epidermidis. Results: The results showed that using 10% (NH4)2SO4 and 35% ethanol for ATPS extraction resulted in the highest hyperin and quercitrin contents. From the RSM-CCD results, the optimal extraction conditions were determined to be ultrasonic extraction at 50 °C for 30 min, giving results consistent with the predicted model and obtaining hyperin and quercitrin contents at 1.5681 ± 0.0114 and 4.6225 ± 0.0327 mg/g, respectively.Furthermore, ATPS extract has excellent antibacterial activity with a minimum inhibitory concentration (MIC) value of 250 µg/mL on both C. acnes and S. epidermidis. This MIC is significantly lower than the H. cordata ultrasound-assisted (UA) extract, with MICs of 1500.00 and 156.25 µg/mL on C. acnes and S. epidermidis, respectively. In addition, the results from the disk diffusion assay also showed that ATPS extraction has superior internal antibacterial activity with a zone of inhibition diameter at 250 µg/mL of 8.67 ± 1.15 and 5.00 ± 2.00 mm. Meanwhile, those of UA extract on C. acnes is 5.67 ± 1.53 mm (at 1500 µg/mL), and on S. epidermidis is 1.34 ± 0.58 mm (at 156.25 µg/mL). Conclusion: To sum up, our research highlights the potential of H. cordata ATPS extracts as the starting material for topical preparations for effectively treating acne.

6.
Electrophoresis ; 44(23): 1818-1825, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37438992

RESUMEN

At present, there is still limited report on the electrokinetic (EK) behavior of bioparticles at the interface of an aqueous two-phase system. In this paper, the EK motion and viability assessment of live algae mixed with the NaClO treated dead algae were carried out at the interface formed by polyethylene glycol (PEG)-rich phase and dextran (DEX)-rich phase in a straight microchannel. The experimental results show that both the live and dead algae at the PEG-DEX interface migrate from the negative electrode to the positive electrode, and the EK velocity of live algae at the interface is slightly larger than that of the dead ones with similar diameters. For either live or dead algae, the EK velocity at the interface decreases with the increase in diameter. A size-velocity curve was used to evaluate the viability of the algae. As most of the microorganisms in ballast water are algae, the method in this paper provides a promising way to detect and evaluate the live microorganism in treated ballast water of a ship.


Asunto(s)
Dextranos , Polietilenglicoles , Agua , Movimiento (Física) , Navíos
7.
Molecules ; 28(5)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36903614

RESUMEN

Food supplements based on antioxidants and vitamins are often prescribed to correct inefficiencies in the human diet and delay diseases such as premature aging and alopecia (temporary or permanent hair loss), given the free radical scavenging activity of these biomolecules. By reducing the concentration of reactive oxygen species (ROS), which promote abnormal hair follicle cycling and morphology, follicle inflammation and oxidative stress are reduced, minimising the effects of these health issues. Gallic acid (GA), which is significantly present in gallnuts and in pomegranate root bark, and ferulic acid (FA), commonly found in brown rice and coffee seeds, are very important antioxidants for the preservation of hair colour, strength and growth. In this work, these two secondary phenolic metabolites were successfully extracted in the Aqueous Two-Phase Systems (ATPS) {ethyl lactate (1) + trisodium citrate (2) + water (3)} and {ethyl lactate (1) + tripotassium citrate (2) + water (3)} at 298.15 K and 0.1 MPa, moving towards the application of these ternary systems in extracting antioxidants from biowaste and their a posteriori processing as food supplements for hair fortification. The studied ATPS provided biocompatible and sustainable media for the extraction of gallic acid and ferulic acid, yielding low mass losses (<3%) and contributing to an eco-friendlier production of therapeutics. The most promising results were obtained for ferulic acid, which attained maximum partition coefficients (K) of 15 ± 5 and (3 ± 2) · 101 and maximum extraction efficiencies (E) of (92.7 ± 0.4)% and (96.7 ± 0.4)% for the longest tie-lines (TLL = 69.68 and 77.66 m%) in {ethyl lactate (1) + trisodium citrate (2) + water (3)} and {ethyl lactate (1) + tripotassium citrate (2) + water (3)}, respectively. Moreover, the effect of pH on the UV-Vis absorbance spectra was studied for all the biomolecules to minimise errors in solute quantification. Both GA and FA were found to be stable at the used extractive conditions.


Asunto(s)
Antioxidantes , Ácido Gálico , Humanos , Antioxidantes/química , Citratos , Suplementos Dietéticos , Agua , Cabello/metabolismo
8.
Prep Biochem Biotechnol ; 53(5): 542-556, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36018558

RESUMEN

Downstream processing is a significant part of a production process and accounts for 50-90% of the production cost of biotechnological products. Post-fermentation localization of a microbial metabolite contributes significantly to the recovery cost of the product. Enterobacter cloacae produced naturally, acidic lipase with a 0.023:1 extracellular localization ratio. This research aimed to re-direct the localization of lipase to the extracellular milieu to reduce recovery costs using multi-objective response surface optimization (MO-RSM). The approach resulted in a 1:0.32 extracellular: intracellular lipase ratio, with product formation kinetics of Luedeking-Piret function showing a significant switch from a completely growth-associated intracellular production to a predominantly non-growth-associated extracellular localization. The enzyme was purified by an aqueous two-phase system which extracted 95.22% lipase with 72.36 purity. Characterization of the enzyme showed a molecular weight of 55.7 kDa, kcat of 68.59 s-1, and a Km of 0.63 mmol. Lipase activity occurred optimally at pH 2.5-3.5 and 50 °C, and was stable in most organic solvents tested. The acidic lipase demonstrated pH-dependent enantioselective esterification in resolving (R, S)-ibuprofen (E = 14, pH 4.5) and (R, S)-Naproxen (E = 13, pH 2.5), with an enantioselective preference for (S)-enantiomer in both drugs thus underpinning its potential for pharmaceutical applications.


Asunto(s)
Enterobacter cloacae , Lipasa , Lipasa/química , Esterificación , Enterobacter cloacae/metabolismo , Estereoisomerismo , Solventes/química , Preparaciones Farmacéuticas , Cinética
9.
ACS Nano ; 17(1): 212-220, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36579744

RESUMEN

We developed an on-chip enrichment method based on an aqueous two-phase system of dextran/polyethylene glycol mix, DEX/PEG ATPS, for digital bioassay. Accordingly, we prepared an array device of femtoliter reactors that displays millions of uniformly shaped DEX-rich droplets under a PEG-rich medium. The DEX-rich droplets effectively enriched DNA molecules from the PEG-rich medium. To quantify the enrichment power of the system, we performed a digital bioassay of alkaline phosphatase (ALP). Upon genetically tagging ALP molecules with the DEX-binding domain (DBD) derived from dextransucrase, the ALP molecules were enriched 59-fold in the DEX droplets in comparison to that in a conventional digital bioassay. Subsequently, we performed a Cas13-based digital SARS-CoV-2 RNA detection assay to evaluate the performance of this system for a more practical assay. In this assay, the target RNA molecules bound to the DBD-tagged Cas13 molecules were effectively enriched in the DEX droplets. Consequently, an enrichment factor of 31 was achieved. Enrichment experiments for nonlabeled proteins were also performed to test the expandability of this technique. The model protein, nontagged ß-galactosidase, was enriched in DEX droplets containing DBD-tagged antibody, with an enrichment factor of over 100. Thus, this system enabled effective on-chip enrichment of target molecules to enhance the detection sensitivity of digital bioassays without using external instruments or an external power source, which would be applicable for on-site bioassays or portable diagnostic tests.


Asunto(s)
COVID-19 , ARN Viral , Humanos , COVID-19/diagnóstico , Polietilenglicoles/química , ARN Viral/aislamiento & purificación , SARS-CoV-2
10.
Metabolism ; 139: 155372, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36470472

RESUMEN

Reduced mitochondrial ATP synthase (ATPS) capacity plays crucial roles in the pathogenesis of metabolic disorders. However, there is currently no effective strategy for synchronously stimulating the expressions of ATPS key subunits to restore its assembly. This study determined the roles of mitochondrial protein FAM3A in regulating the activity and assembly of ATPS in hepatocytes. FAM3A is localized in mitochondrial matrix, where it interacts with F1-ATPS to initially activate ATP synthesis and release, and released ATP further activates P2 receptor-Akt-CREB pathway to induce FOXD3 expression. FOXD3 synchronously stimulates the transcriptions of ATPS key subunits and assembly genes to increase its assembly and capacity, augmenting ATP synthesis and inhibiting ROS production. FAM3A, FOXD3 and ATPS expressions were reduced in livers of diabetic mice and NAFLD patients. FOXD3 expression, ATPS capacity and ATP content were reduced in various tissues of FAM3A-deficient mice with dysregulated glucose and lipid metabolism. Hepatic FOXD3 activation increased ATPS assembly to ameliorate dysregulated glucose and lipid metabolism in obese mice. Hepatic FOXD3 inhibition or knockout reduced ATPS capacity to aggravate HFD-induced hyperglycemia and steatosis. In conclusion, FAM3A is an active ATPS component, and regulates its activity and assembly by activating FOXD3. Activating FAM3A-FOXD3 axis represents a viable strategy for restoring ATPS assembly to treat metabolic disorders.


Asunto(s)
Diabetes Mellitus Experimental , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Glucosa , Homeostasis , Adenosina Trifosfato/metabolismo , Citocinas/metabolismo
11.
Polymers (Basel) ; 16(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38201690

RESUMEN

Air, a widely recognized dielectric material, is employed as a dielectric layer in this study. We present a triboelectric sensor with a laser-induced graphene (LIG) electrode and an air-trapped pad using silicone rubber (SR). A very thin device with a thickness of 1 mm and an effective gap for contact-separation between the films of silicone rubber and polyimide (PI) of 0.6 mm makes the device extremely highly sensitive for very low amplitudes of pressure. The fabrication of LIG as an electrode material on the surface of PI is the key reason for the fabrication of the thin sensor. In this study, we showed that the fabricated air-trapped padded sensor (ATPS) has the capability to generate an output voltage of ~32 V, a short-circuit current of 1.2 µA, and attain a maximum power density of 139.8 mW m-2. The performance of the ATPS was compared with a replicated device having a hole on the pad, allowing air to pass through during contact-separation. The observed degradation in the electrical output suggests that the trapped air in the pad plays a crucial role in enhancing the output voltage. Therefore, the ATPS emerges as an ultra-sensitive sensor for healthcare sensing applications.

12.
Molecules ; 27(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36431939

RESUMEN

The growing human population, together with the inefficient use of natural resources, has been dramatically increasing the production of food waste, which poses serious economic, environmental, and social problems. Being so, it is necessary to increase the efficiency of food consumption so as to reduce its waste and to convert the remaining residues into societal benefits. Since this biowaste is rich in polyphenols and vitamins, it could become the feedstock for the production of important value-added compounds for the pharmaceutical (e.g., food supplements) and cosmetic (e.g., creams and shampoos) industries. In this work, partition studies of one polyphenol (epicatechin) and two B-complex vitamins (cyanocobalamin and nicotinic acid) were performed in biodegradable Aqueous Two-Phase Systems (ATPS) based on ethyl lactate and on organic salts (disodium tartrate, tripotassium citrate, and trisodium citrate) at 298.15 K and 0.1 MPa. The largest partition coefficient (K) and extraction efficiency (E) were obtained for vitamin B12 (K=78.56, E=97.5%) for the longest tie line TLL=77.66% in the ATPS {ethyl lactate (1) + tripotassium citrate (2) + water (3)}. All the extractions were obtained with low biomolecule mass losses in quantification (<5%) and after a thorough study of pH influence in the UV−Vis absorbance spectra.


Asunto(s)
Eliminación de Residuos , Vitaminas , Humanos , Polifenoles , Vitamina A , Vitamina K , Vitamina B 12 , Agua , Citrato de Potasio
13.
World J Microbiol Biotechnol ; 38(12): 235, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36229747

RESUMEN

As physiological impairments that require replacement therapy continue to increase, so also does the need for improved production of acidic lipase from new microbial sources. Enterobacter cloacae strain UCCM 00116 produced a novel acidic lipase in kernel oil-processing waste-basal broth with 0.023:1 extracellular: intracellular localization ratio. This research re-directed enzyme localization to the extracellular milieu to reduce recovery cost using multi-objective response surface optimization of medium parameters. Results revealed a 1:0.32 extracellular:intracellular lipase ratio. Product formation kinetics, modeled by the Luedeking-Piret function, showed a significant switch from a completely growth-associated intracellular production to a predominantly non-growth-associated extracellular localization through medium optimization. Aqueous two-phase system purification conditions extracted 95.22% lipase with 72.36 purity, a Vmax of 370.37 µmolmin-1, and a Km of 0.63 mmol. Enzyme activity was enhanced by K+ and Ca2+ ions, stable in many organic solvents, except acetone, and had pH and temperature optima at 2.5-3.5 and 50 °C, respectively.


Asunto(s)
Enterobacter cloacae , Lipasa , Acetona , Enterobacter cloacae/metabolismo , Estabilidad de Enzimas , Espacio Extracelular , Concentración de Iones de Hidrógeno , Iones , Cinética , Lipasa/metabolismo , Solventes/farmacología , Temperatura
14.
Anal Bioanal Chem ; 414(28): 7949-7956, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36169675

RESUMEN

Malaria is an infectious disease that can cause severe sickness and death if not diagnosed and treated in a timely manner. The current gold standard technique for malaria diagnosis is microscopy, which requires a dedicated laboratory setting and trained personnel and can have a long time to result. These requirements can be alleviated using paper-based diagnostic devices that enable rapid and inexpensive diagnosis at the point of care, which can allow patients to receive treatment before their symptoms progress when used for early detection of diseases. The lateral-flow immunoassay (LFA) is one such device, but currently available LFAs are susceptible to false negative results caused by low parasite density. To improve sensitivity and detection, we utilized the aqueous two-phase system (ATPS) to concentrate and purify the sample, and nanozyme signal enhancement to increase the intensity of the visible signal on the test strip. We were able to achieve a limit of detection (LOD) of 0.01 ng/mL for the malaria biomarker Plasmodium lactate dehydrogenase (pLDH) in human serum using a multi-step assay combining the LFA format with the ATPS and nanozyme signal enhancement.


Asunto(s)
Malaria , Plasmodium , Humanos , L-Lactato Deshidrogenasa , Inmunoensayo/métodos , Límite de Detección , Malaria/diagnóstico
15.
Front Plant Sci ; 13: 897376, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755696

RESUMEN

Secondary xylem development requires the coordination of multiple regulatory factors, including plant hormones, transcription factors, and microRNAs (miRNAs). MiR395 is an important regulator involved in sulfate metabolism, but its function in plant development is unclear. This study investigated the functions of miR395c in the secondary xylem development in Populus alba × P. glandulosa. MiR395c was highly expressed in the shoot apex and secondary xylem. The overexpression of miR395c resulted in an increase in both secondary xylem width and vessel dimension, as well as a decrease in the thickness of the secondary cell wall of the xylem fiber. Further analysis showed that miR395c inhibited biosynthesis of sulfate metabolic products by targeting ATPS genes, which led to the reduction of Abscisic acid (ABA) synthesis and down-regulation of MYB46 expression. Our results indicate that miR395c regulates the secondary xylem development process via sulfate metabolism in Populus.

16.
Artículo en Inglés | MEDLINE | ID: mdl-35464888

RESUMEN

Background and purpose: The Ethos system has enabled online adaptive radiotherapy (oART) by implementing an automated treatment planning system (aTPS) for both intensity-modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) plan creation. The purpose of this study is to evaluate the quality of aTPS plans in the pelvic region. Material and Methods: Sixty patients with anal (n = 20), rectal (n = 20) or prostate (n = 20) cancer were retrospectively re-planned with the aTPS. Three IMRT (7-, 9- and 12-field) and two VMAT (2 and 3 arc) automatically generated plans (APs) were created per patient. The duration of the automated plan generation was registered. The best IMRT-AP and VMAT-AP for each patient were selected based on target coverage and dose to organs at risk (OARs). The AP quality was analyzed and compared to corresponding clinically accepted and manually generated VMAT plans (MPs) using several clinically relevant dose metrics. Calculation-based pre-treatment plan quality assurance (QA) was performed for all plans. Results: The median total duration to generate the five APs with the aTPS was 55 min, 39 min and 35 min for anal, prostate and rectal plans, respectively. The target coverage and the OAR sparing were equivalent for IMRT-APs and VMAT-MPs, while VMAT-Aps.demonstrated lower target dose homogeneity and higher dose to some OARs. Both conformity and homogeneity index were equivalent (rectal) or better (anal and prostate) for IMRT-APs compared to VMAT-MPs. All plans passed the patient-specific QA tolerance limit. Conclusions: The aTPS generates plans comparable to MPs within a short time-frame which is highly relevant for oART treatments.

17.
Prep Biochem Biotechnol ; 52(10): 1134-1141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35189070

RESUMEN

Conventional fermentation processes need to be upgraded to produce a wide array of biomolecules to overcome lower product yield. The cost of production of biomolecules using the fermentation method could be reduced by increasing the product yield by various process enhancement methods. In this study, different innovative process enhancement methods were evaluated to increase the co-production of uricase and alkaline protease at the bioreactor level. Ultrasound-assisted fermentation (UAF), Extractive fermentation (ATPS), and Ultrasound-assisted extractive fermentation (UATPS) are the three innovative methods used for process enhancement. Maximum enzyme production was obtained in a combinatorial approach of ultrasound and extractive fermentation, i.e., ultrasound-assisted extractive fermentation where uricase and protease production enhanced by 2.5 fold and 1.9 fold, respectively, as compared to conventional fermentation.


Asunto(s)
Reactores Biológicos , Urato Oxidasa , Fermentación
18.
J Biol Chem ; 298(2): 101565, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34999119

RESUMEN

Trehalose is the major "blood sugar" of insects and it plays a crucial role in energy supply and as a stress protectant. The hydrolysis of trehalose occurs only under the enzymatic control of trehalase (Treh), which plays important roles in growth and development, energy supply, chitin biosynthesis, and abiotic stress responses. Previous reports have revealed that the vital hormone 20-hydroxyecdysone (20E) regulates Treh, but the detailed mechanism underlying 20E regulating Treh remains unclear. In this study, we investigated the function of HaTreh1 in Helicoverpa armigera larvae. The results showed that the transcript levels and enzymatic activity of HaTreh1 were elevated during molting and metamorphosis stages in the epidermis, midgut, and fat body, and that 20E upregulated the transcript levels of HaTreh1 through the classical nuclear receptor complex EcR-B1/USP1. HaTreh1 is a mitochondria protein. We also found that knockdown of HaTreh1 in the fifth- or sixth-instar larvae resulted in weight loss and increased mortality. Yeast two-hybrid, coimmunoprecipitation, and glutathione-S-transferase (GST) pull-down experiments demonstrated that HaTreh1 bound with ATP synthase subunit alpha (HaATPs-α) and that this binding increased under 20E treatment. In addition, 20E enhanced the transcript level of HaATPs-α and ATP content. Finally, the knockdown of HaTreh1 or HaATPs-α decreased the induction effect of 20E on ATP content. Altogether, these findings demonstrate that 20E controls ATP production by up-regulating the binding of HaTreh1 to HaATPs-α in H. armigera.


Asunto(s)
Ecdisterona , Proteínas de Insectos , Mariposas Nocturnas , Trehalasa , Adenosina Trifosfato/metabolismo , Animales , Ecdisterona/metabolismo , Proteínas de Insectos/metabolismo , Larva/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mariposas Nocturnas/enzimología , Mariposas Nocturnas/genética , Trehalasa/metabolismo , Trehalosa/metabolismo
19.
J Colloid Interface Sci ; 608(Pt 2): 1191-1201, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34735854

RESUMEN

HYPOTHESIS: Stabilization of water-in-water (W/W) emulsions resulting from the separation of polymeric phases such as dextran (DEX) and poly(ethyleneoxide) (PEO) is highly challenging, because of the very low interfacial tensions between the two phases and because of the interface thickness extending over several nanometers. In the present work, we present a new type of stabilizers, based on bis-hydrophilic, thermoresponsive microgels, incorporating in the same structure poly(N-isopropylacrylamide) (pNIPAM) chains having an affinity for the PEO phase and dextran moieties. We hypothesize that these particles allow better control of the stability of the W/W emulsions. EXPERIMENTS: The microgels were synthesized by copolymerizing the NIPAM monomer with a multifunctional methacrylated dextran. They were characterized by dynamic light scattering, zeta potential measurements and nuclear magnetic resonance as a function of temperature. Microgels with different compositions were tested as stabilizers of droplets of the PEO phase dispersed in the DEX phase (P/D) or vice-versa (D/P), at different concentrations and temperatures. FINDINGS: Only microgels with the highest DEX content revealed excellent stabilizing properties for the emulsions by adsorbing at the droplet surface, thus demonstrating the fundamental role of bis-hydrophilicity. At room temperature, both pNIPAM and DEX chains were swollen by water and stabilized better D/P emulsions. However, above the volume phase transition temperature (VPTT ≈ 32 °C) of pNIPAM the microgels shrunk and stabilized better P/D emulsions. At all temperatures, excess microgels partitioned more to the PEO phase. The change in structure and interparticle interaction induced by heating can be exploited to control the W/W emulsion stability.


Asunto(s)
Microgeles , Emulsiones , Geles , Interacciones Hidrofóbicas e Hidrofílicas , Agua
20.
ACS Nano ; 16(1): 38-49, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34846855

RESUMEN

Microparticles with defined shapes and spatial chemical modification can interface with cells and tissues at the cellular scale. However, conventional methods to fabricate shaped microparticles have trade-offs between the throughput of manufacture and the precision of particle shape and chemical functionalization. Here, we achieved scalable production of hydrogel microparticles at rates of greater than 40 million/hour with localized surface chemistry using a parallelized step emulsification device and temperature-induced phase-separation. The approach harnesses a polymerizable polyethylene glycol (PEG) and gelatin aqueous two-phase system (ATPS) which conditionally phase separates within microfluidically generated droplets. Following droplet formation, phase separation is induced and phase separated droplets are subsequently cross-linked to form uniform crescent and hollow shell particles with gelatin functionalization on the boundary of the cavity. The gelatin localization enabled deterministic cell loading in subnanoliter-sized crescent-shaped particles, which we refer to as nanovials, with cavity dimensions tuned to the size of cells. Loading on nanovials also imparted improved cell viability during analysis and sorting using standard fluorescence activated cell sorters, presumably by protecting cells from shear stress. This localization effect was further exploited to selectively functionalize capture antibodies to nanovial cavities enabling single-cell secretion assays with reduced cross-talk in a simplified format.


Asunto(s)
Gelatina , Hidrogeles , Hidrogeles/química , Polietilenglicoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA