Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
2.
Acta Pharm Sin B ; 12(3): 1339-1350, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35530159

RESUMEN

DNA damage response (DDR) is a highly conserved genome surveillance mechanism that preserves cell viability in the presence of chemotherapeutic drugs. Hence, small molecules that inhibit DDR are expected to enhance the anti-cancer effect of chemotherapy. Through a recent chemical library screen, we identified shikonin as an inhibitor that strongly suppressed DDR activated by various chemotherapeutic drugs in cancer cell lines derived from different origins. Mechanistically, shikonin inhibited the activation of ataxia telangiectasia mutated (ATM), and to a lesser degree ATM and RAD3-related (ATR), two master upstream regulators of the DDR signal, through inducing degradation of ATM and ATR-interacting protein (ATRIP), an obligate associating protein of ATR, respectively. As a result of DDR inhibition, shikonin enhanced the anti-cancer effect of chemotherapeutic drugs in both cell cultures and in mouse models. While degradation of ATRIP is proteasome dependent, that of ATM depends on caspase- and lysosome-, but not proteasome. Overexpression of ATM significantly mitigated DDR inhibition and cell death induced by shikonin and chemotherapeutic drugs. These novel findings reveal shikonin as a pan DDR inhibitor and identify ATM as a primary factor in determining the chemo sensitizing effect of shikonin. Our data may facilitate the development of shikonin and its derivatives as potential chemotherapy sensitizers through inducing ATM degradation.

4.
Acta Pharmaceutica Sinica B ; (6): 1339-1350, 2022.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-929373

RESUMEN

DNA damage response (DDR) is a highly conserved genome surveillance mechanism that preserves cell viability in the presence of chemotherapeutic drugs. Hence, small molecules that inhibit DDR are expected to enhance the anti-cancer effect of chemotherapy. Through a recent chemical library screen, we identified shikonin as an inhibitor that strongly suppressed DDR activated by various chemotherapeutic drugs in cancer cell lines derived from different origins. Mechanistically, shikonin inhibited the activation of ataxia telangiectasia mutated (ATM), and to a lesser degree ATM and RAD3-related (ATR), two master upstream regulators of the DDR signal, through inducing degradation of ATM and ATR-interacting protein (ATRIP), an obligate associating protein of ATR, respectively. As a result of DDR inhibition, shikonin enhanced the anti-cancer effect of chemotherapeutic drugs in both cell cultures and in mouse models. While degradation of ATRIP is proteasome dependent, that of ATM depends on caspase- and lysosome-, but not proteasome. Overexpression of ATM significantly mitigated DDR inhibition and cell death induced by shikonin and chemotherapeutic drugs. These novel findings reveal shikonin as a pan DDR inhibitor and identify ATM as a primary factor in determining the chemo sensitizing effect of shikonin. Our data may facilitate the development of shikonin and its derivatives as potential chemotherapy sensitizers through inducing ATM degradation.

5.
Acta Pharm Sin B ; 11(10): 2983-2994, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34729299

RESUMEN

Genomic instability remains an enabling feature of cancer and promotes malignant transformation. Alterations of DNA damage response (DDR) pathways allow genomic instability, generate neoantigens, upregulate the expression of programmed death ligand 1 (PD-L1) and interact with signaling such as cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling. Here, we review the basic knowledge of DDR pathways, mechanisms of genomic instability induced by DDR alterations, impacts of DDR alterations on immune system, and the potential applications of DDR alterations as biomarkers and therapeutic targets in cancer immunotherapy.

6.
JHEP Rep ; 3(4): 100301, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34113839

RESUMEN

Cellular senescence is a state of irreversible cell cycle arrest that has important physiological functions. However, cellular senescence is also a hallmark of ageing and has been associated with several pathological conditions. A wide range of factors including genotoxic stress, mitogens and inflammatory cytokines can induce senescence. Phenotypically, senescent cells are characterised by short telomeres, an enlarged nuclear area and damaged genomic and mitochondrial DNA. Secretion of proinflammatory proteins, also known as the senescence-associated secretory phenotype, is a characteristic of senescent cells that is thought to be the main contributor to their disease-inducing properties. In the past decade, the role of cellular senescence in the development of non-alcoholic fatty liver disease (NAFLD) and its progression towards non-alcoholic steatohepatitis (NASH) has garnered significant interest. Until recently, it was suggested that hepatocyte cellular senescence is a mere consequence of the metabolic dysregulation and inflammatory phenomena in fatty liver disease. However, recent work in rodents has suggested that senescence may be a causal factor in NAFLD development. Although causality is yet to be established in humans, current evidence suggests that targeting senescent cells has therapeutic potential for NAFLD. We aim to provide insights into the quality of the evidence supporting a causal role of cellular senescence in the development of NAFLD in rodents and humans. We will elaborate on key cellular and molecular features of senescence and discuss the efficacy and safety of novel senolytic drugs for the treatment or prevention of NAFLD.

7.
Acta Pharmaceutica Sinica B ; (6): 2983-2994, 2021.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-922779

RESUMEN

Genomic instability remains an enabling feature of cancer and promotes malignant transformation. Alterations of DNA damage response (DDR) pathways allow genomic instability, generate neoantigens, upregulate the expression of programmed death ligand 1 (PD-L1) and interact with signaling such as cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling. Here, we review the basic knowledge of DDR pathways, mechanisms of genomic instability induced by DDR alterations, impacts of DDR alterations on immune system, and the potential applications of DDR alterations as biomarkers and therapeutic targets in cancer immunotherapy.

8.
Clin Transl Radiat Oncol ; 25: 61-66, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33072895

RESUMEN

Lung cancer is the leading cause of cancer mortality worldwide and most patients are unsuitable for 'gold standard' treatment, which is concurrent chemoradiotherapy. CONCORDE is a platform study seeking to establish the toxicity profiles of multiple novel radiosensitisers targeting DNA repair proteins in patients treated with sequential chemoradiotherapy. Time-to-event continual reassessment will facilitate efficient dose-finding.

9.
Comput Struct Biotechnol J ; 18: 1939-1946, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774788

RESUMEN

Telomeres are DNA repeats at the ends of linear chromosomes and are replicated by telomerase, a ribonucleoprotein reverse transcriptase. Telomere length regulation and chromosome end capping are essential for genome stability and are mediated primarily by the shelterin and CST complexes. POT1-TPP1, a subunit of shelterin, binds the telomeric overhang, suppresses ATR-dependent DNA damage response, and recruits telomerase to telomeres for DNA replication. POT1 localization to telomeres and chromosome end protection requires its interaction with TPP1. Therefore, the POT1-TPP1 complex is critical to telomere maintenance and full telomerase processivity. The aim of this mini-review is to summarize recent POT1-TPP1 structural studies and discuss how the complex contributes to telomere length regulation. In addition, we review how disruption of POT1-TPP1 function leads to human disease.

10.
Saudi J Biol Sci ; 27(8): 2174-2184, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32714044

RESUMEN

Testicular torsion and detorsion (TTD) is a serious urological condition affecting young males that is underlined by an ischemia reperfusion injury (tIRI) to the testis as the pathophysiological mechanism. During tIRI, uncontrolled production of oxygen reactive species (ROS) causes DNA damage leading to germ cell apoptosis (GCA). The aim of the study is to explore whether inhibition of NADPH oxidase (NOX), a major source of intracellular ROS, will prevent tIRI-induced GCA and its association with endoplasmic reticulum (ER) stress. Sprague-Dawley rats (n = 36) were divided into three groups: sham, tIRI only and tIRI treated with apocynin (a NOX inhibitor). Rats undergoing tIRI endured an ischemic injury for 1 h followed by 4 h of reperfusion. Spermatogenic damage was evaluated histologically, while cellular damages were assessed using real time PCR, immunofluorescence staining, Western blot and biochemical assays. Disrupted spermatogenesis was associated with increased lipid and protein peroxidation and decreased antioxidant activity of the enzyme superoxide dismutase (SOD) as a result of tIRI. In addition, increased DNA double strand breaks and formation of 8-OHdG adducts associated with increased phosphorylation of the DNA damage response (DDR) protein H2AX. The ASK1/JNK apoptosis signaling pathway was also activated in response to tIRI. Finally, increased immuno-expression of the unfolded protein response (UPR) downstream targets: GRP78, eIF2-α1, CHOP and caspase 12 supported the presence of ER stress. Inhibition of NOX by apocynin protected against tIRI-induced GCA and ER stress. In conclusion, NOX inhibition minimized tIRI-induced intracellular oxidative damages leading to GCA and ER stress.

11.
Rep Pract Oncol Radiother ; 24(6): 672-680, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31719806

RESUMEN

BACKGROUND: While patients with ataxia telangiectasia are known to have increased radiation sensitivity, patients with germline heterozygous ataxia telangiectasia mutated (ATM) mutations can have widely varying functional and clinical effects, which can make management decisions difficult. With an increased prevalence of gene panel-based testing for breast cancer patients, radiation oncologists are increasingly confronted with patients who carry germline ATM variants of uncertain clinical significance. This study describes the clinical courses and outcomes of 5 breast cancer patients with varying germline heterozygous ATM mutations undergoing radiation therapy at our institution in order to provide additional knowledge of the varying clinical effects to aid future decision making. CASE SERIES: We identified 5 patients with breast cancer and varying germline heterozygous ATM mutations treated at the University of North Carolina Hospitals between 2015 and 2017. The median age at breast cancer diagnosis for the patient series was 46. Clinical effects of radiation treatment varied amongst the 5 patients. The one patient with a pathogenic ATM mutation had no increased radiation related toxicity. Of the 4 patients with ATM variants of uncertain significance, one patient had increased radiation sensitivity with Grade 3 dermatitis. All patients have remained recurrence free with a median duration of 18 months. CONCLUSION: Our data illustrates that patients with germline heterozygous ATM mutations can have widely varying clinical effects with radiation therapy. Given the possibility of unpredictable deleterious effects, our study highlights the importance of caution and careful consideration when devising the multi-modality management strategy in these patients.

12.
JACC Basic Transl Sci ; 4(2): 234-247, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31061925

RESUMEN

High-mobility group box 1 (HMGB1) is a deoxyribonucleic acid (DNA)-binding protein associated with DNA repair. Decreased nuclear HMGB1 expression and increased DNA damage response (DDR) were observed in human failing hearts. DNA damage and DDR as well as cardiac remodeling were suppressed in cardiac-specific HMGB1 overexpression transgenic mice after angiotensin II stimulation as compared with wild-type mice. In vitro, inhibition of HMGB1 increased phosphorylation of extracellular signal-related kinase 1/2 and nuclear factor kappa B, which was rescued by DDR inhibitor treatment. DDR inhibitor treatment provided a cardioprotective effect on angiotensin II-induced cardiac remodeling in mice.

13.
JACC CardioOncol ; 1(2): 196-205, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34396183

RESUMEN

OBJECTIVES: This study was designed to analyze the prevalence and potential genetic basis of cancer and heart failure in peripartum cardiomyopathy (PPCM). BACKGROUND: PPCM manifests as heart failure late in pregnancy or postpartum in women without previous heart disease. METHODS: Clinical history and cancer prevalence were evaluated in a cohort of 236 PPCM patients from Germany and Sweden. Exome sequencing assessed variants in 133 genes associated with cancer predisposition syndromes (CPS) and in 115 genes associated with dilated/hypertrophic cardiomyopathy (DCM/HCM) in 14 PPCM patients with a history of cancer, and in 6 PPCM patients without a history of cancer. RESULTS: The prevalence of cancer was 16-fold higher (8.9%, 21 of 236 patients) in PPCM patients compared to age-matched women (German cancer registry, Robert-Koch-Institute: 0.59%; p < 0.001). Cancer before PPCM occurred in 12 of 21 patients of whom 11 obtained cardiotoxic cancer therapies. Of those, 17% fully recovered cardiac function by 7 ± 2 months of follow-up compared to 55% of PPCM patients without cancer (p = 0.015). Cancer occurred after PPCM in 10 of 21 patients; 80% had left ventricular ejection fraction of ≥50% after cancer therapy. Whole-exome sequencing in 14 PPCM patients with cancer revealed that 43% (6 of 14 patients) carried likely pathogenic (Class IV) or pathogenic (Class V) gene variants associated with DCM/HCM in CPT2, DSP, MYH7, TTN, and/or with CPS in ATM, ERCC5, NBN, RECQL4, and SLX4. All CPS variants affected DNA damage response genes. CONCLUSIONS: Cardiotoxic cancer therapy before PPCM is associated with delayed full recovery. The high cancer prevalence in PPCM is linked to likely pathogenic/pathogenic gene variants associated with DCM/HCM and/or CPS/DNA damage response-related cancer risk. This may warrant genetic testing and screening for heart failure in pregnant women with a cancer history and screening for cancer in PPCM patients.

14.
Biochem Biophys Rep ; 16: 115-121, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30417129

RESUMEN

Deamination of 5-methyl cytosine is a major cause of cancer-driver mutations in inflammation-associated cancers. The deaminase APOBEC3B is expressed in these cancers and causes mutations under replication stress; however, the mechanisms by which APOBEC3B mediates deamination and its association with genomic disorders are still unclear. Here, we show that APOBEC3B is stabilized to induce deamination reaction in response to DNA double-strand breaks (DSBs), resulting in the formation of long-lasting DSBs. Uracil, the major deamination product, is subsequently targeted by base excision repair (BER) through uracil-DNA glycosylase 2 (UNG2); hence late-onset DSBs arise as by-products of BER. The frequency of these delayed DSBs was increased by treatment of cells with a PARP inhibitor, and was suppressed following knock-down of UNG2. The late-onset DSBs were induced in an ATR-dependent manner. Those secondary DSBs were persistent, unlike DSBs directly caused by γ-ray irradiation. Overall, these results suggest that the deaminase APOBEC3B is induced in response to DSBs, leading to long-lasting DSB formation in addition to mutagenic 5me-C>T transition induction.

15.
JACC Basic Transl Sci ; 3(4): 563-572, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30175280

RESUMEN

In radiation therapy for cancer, the therapeutic ratio represents an optimal balance between tumor control and normal tissue complications. As improvements in the therapeutic arsenal against cancer extend longevity, the importance of late effects of radiation increases, particularly those caused by vascular endothelial injury. Radiation both initiates and accelerates atherosclerosis, leading to vascular events like stroke, coronary artery disease, and peripheral artery disease. Increased levels of proinflammatory cytokines in the blood of long-term survivors of the atomic bomb suggest that radiation evokes a systemic inflammatory state responsible for chronic vascular side effects. In this review, the authors offer an overview of potential mechanisms implicated in radiation-induced vascular injury.

16.
Viruses ; 9(10)2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28934154

RESUMEN

Human papillomaviruses (HPV) require the activation of the DNA damage response (DDR) in order to undergo a successful life cycle. This activation presents a challenge for the virus and the infected cell: how does viral and host replication proceed in the presence of a DDR that ordinarily arrests replication; and how do HPV16 infected cells retain the ability to proliferate in the presence of a DDR that ordinarily arrests the cell cycle? This raises a further question: why do HPV activate the DDR? The answers to these questions are only partially understood; a full understanding could identify novel therapeutic strategies to target HPV cancers. Here, we propose that the rapid replication of an 8 kb double stranded circular genome during infection creates aberrant DNA structures that attract and activate DDR proteins. Therefore, HPV replication in the presence of an active DDR is a necessity for a successful viral life cycle in order to resolve these DNA structures on viral genomes; without an active DDR, successful replication of the viral genome would not proceed. We discuss the essential role of TopBP1 in this process and also how viral and cellular replication proceeds in HPV infected cells in the presence of DDR signals.


Asunto(s)
Daño del ADN , Reparación del ADN , Replicación del ADN , Interacciones Huésped-Patógeno/fisiología , Papillomaviridae/fisiología , Infecciones por Papillomavirus/virología , Replicación Viral , Proteínas Portadoras/fisiología , Ciclo Celular/fisiología , Proteínas de Unión al ADN/fisiología , Genoma Viral , Papillomavirus Humano 16/fisiología , Humanos , Proteínas Nucleares/fisiología , Infecciones por Papillomavirus/genética , Proteínas Virales/fisiología
17.
Noncoding RNA Res ; 1(1): 64-68, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30159412

RESUMEN

DNA repair is an important signaling mechanism that is necessary to maintain genomic stability. Various types of DNA repair proteins are involved in the repair of different types of DNA damage. However, most of the DNA repair proteins are modified post-translation in order to activate their repair function, such as, ubiquitination, phosphorylation, acetylation, etc. Similarly, DNA repair proteins are also regulated by posttranscriptional modifications. Non-coding microRNAs (miRNAs) induced posttranscriptional regulation of mRNAs has gained attention in recent years. MiRNA-induced regulation of DNA repair proteins is of great interest, owing to its potential role in cancer therapy. In this review, we have summarized the role of different miRNAs in the regulation of various types of DNA repair proteins, which are essential for the maintenance of genomic stability.

18.
Regen Ther ; 5: 55-63, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31245502

RESUMEN

Human pluripotent stem cells, including human induced pluripotent stem cells (hiPSCs), are promising materials for regenerative medicine and cell transplantation therapy. However, tumorigenic potential of residual undifferentiated stem cells hampers their use in these therapies. Therefore, it is important to develop methods that selectively eliminate undifferentiated stem cells from a population of differentiated cells before their transplantation. In the present study, we investigated whether plasma-activated medium (PAM) selectively eliminated undifferentiated hiPSCs by inducing external oxidative stress. PAM was prepared by irradiating cell culture medium with non-thermal atmospheric pressure plasma. We observed that PAM selectively and efficiently killed undifferentiated hiPSCs cocultured with normal human dermal fibroblasts (NHDFs), which were used as differentiated cells. We also observed that undifferentiated hiPSCs were more sensitive to PAM than hiPSC-derived differentiated cells. Gene expression analysis suggested that lower expression of oxidative stress-related genes, including those encoding enzymes involved in hydrogen peroxide (H2O2) degradation, in undifferentiated hiPSCs was one of the mechanisms underlying PAM-induced selective cell death. PAM killed undifferentiated hiPSCs more efficiently than a medium containing the same concentration of H2O2 as that in PAM, suggesting that H2O2 and various reactive oxygen/nitrogen species in PAM selectively eliminated undifferentiated hiPSCs. Thus, our results indicate that PAM has a great potential to eliminate tumorigenic hiPSCs from a population of differentiated cells and that it may be a very useful tool in regenerative medicine and cell transplantation therapy.

19.
Genom Data ; 5: 72-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26484229

RESUMEN

The aim of our study was to analyze the consequences of non-synonymous SNPs in Slc11a2 gene using bioinformatic tools. There is a current need of efficient bioinformatic tools for in-depth analysis of data generated by the next generation sequencing technologies. SNPs are known to play an imperative role in understanding the genetic basis of many genetic diseases. Slc11a2 is one of the major metal transporter families in mammals and plays a critical role in host defenses. In this study, we performed a comprehensive analysis of the impact of all non-synonymous SNPs in this gene using multiple tools like SIFT, PROVEAN, I-Mutant and PANTHER. Among the total 124 SNPs obtained from amplicon sequencing of Slc11a2 gene by Ion Torrent PGM involving 10 individuals of Gir cattle and Murrah buffalo each, we found 22 non-synonymous. Comparing the prediction of these 4 methods, 5 nsSNPs (G369R, Y374C, A377V, Q385H and N492S) were identified as deleterious. In addition, while tested out for polar interactions with other amino acids in the protein, from above 5, Y374C, Q385H and N492S showed a change in interaction pattern and further confirmed by an increase in total energy after energy minimizations in case of mutant protein compared to the native.

20.
Cancer Biol Ther ; 16(7): 1005-13, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25985143

RESUMEN

DNA is the prime target of anticancer treatments. DNA damage triggers a series of signaling cascades promoting cellular survival, including DNA repair, cell cycle arrest, and autophagy. The elevated basal and/or stressful levels of both DNA repair and autophagy observed in tumor cells, in contrast to normal cells, have been identified as the most important drug-responsive programs that impact the outcome of anticancer therapy. The exact relationship between DNA repair and autophagy in cancer cells remains unclear. On one hand, autophagy has been shown to regulate some of the DNA repair proteins after DNA damage by maintaining the balance between their synthesis, stabilization, and degradation. One the other hand, some evidence has demonstrated that some DNA repair molecular have a crucial role in the initiation of autophagy. In this review, we mainly discuss the interplay between DNA repair and autophagy in anticancer therapy and expect to enlighten some effective strategies for cancer treatment.


Asunto(s)
Autofagia/genética , Daño del ADN , Reparación del ADN , Neoplasias/genética , Transducción de Señal , Apoptosis/genética , Supervivencia Celular/genética , Humanos , Modelos Genéticos , Neoplasias/metabolismo , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA