Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 10: 1118703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035319

RESUMEN

Introduction: Primary Sjögren's syndrome (SS) is an autoimmune exocrinopathy that affects the structure and function of salivary and lachrymal glands. Labial salivary gland (LSG) acinar cells from SS patients lose cellular homeostasis and experience endoplasmic reticulum and oxidative stress. The integrated cellular stress response (ISR) is an adaptive pathway essential for restoring homeostasis against various stress-inducing factors, including pro-inflammatory cytokines, and endoplasmic reticulum and oxidative stress. ISR activation leads eIF2α phosphorylation, which transiently blocks protein synthesis while allowing the ATF4 expression, which induces a gene expression program that seeks to optimize cellular recovery. PKR, HRI, GCN2, and PERK are the four sentinel stress kinases that control eIF2α phosphorylation. Dysregulation and chronic activation of ISR signaling have pathologic consequences associated with inflammation. Methods: Here, we analyzed the activation of the ISR in LSGs of SS-patients and non-SS sicca controls, determining the mRNA, protein, and phosphorylated-protein levels of key ISR components, as well as the expression of some of ATF4 targets. Moreover, we performed a qualitative characterization of the distribution of ISR components in LSGs from both groups and evaluated if their levels correlate with clinical parameters. Results: We observed that the four ISR sensors are expressed in LSGs of both groups. However, only PKR and PERK showed increased expression and/or activation in LSGs from SS-patients. eIF2α and p-eIF2α protein levels significantly increased in SS-patients; meanwhile components of the PP1c complex responsible for eIF2α dephosphorylation decreased. ATF4 mRNA levels were decreased in LSGs from SS-patients along with hypermethylation of the ATF4 promoter. Despite low mRNA levels, SS-patients showed increased levels of ATF4 protein and ATF4-target genes involved in the antioxidant response. The acinar cells of SS-patients showed increased staining intensity for PKR, p-PKR, p-PERK, p-eIF2α, ATF4, xCT, CHOP, and NRF2. Autoantibodies, focus score, and ESSDAI were correlated with p-PERK/PERK ratio and ATF4 protein levels. Discussion: In summary, the results showed an increased ISR activation in LSGs of SS-patients. The increased protein levels of ATF4 and ATF4-target genes involved in the redox homeostasis could be part of a rescue response against the various stressful conditions to which the LSGs of SS-patients are subjected and promote cell survival.

2.
Life Sci ; 286: 120044, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637792

RESUMEN

AIM: To elucidate the mechanism behind the sustained high levels of phosphorylated eIF2α in HaCaT cells post-UVB. MAIN METHODS: In this study, expression levels of the machinery involved in the dephosphorylation of eIF2α (GADD34, CReP and PP1), as well as the PERK-eIF2α-ATF4-CHOP, IRE1α/XBP1s and ATF6α signaling cascades, were analyzed by western blot and fluorescence microscope. KEY FINDINGS: Our data showed that UVB induces the phosphorylation of eIF2α, which induces the translation of ATF4 and consequently the expression of CHOP and GADD34. Nevertheless, UVB also suppresses the translation of ATF4 and GADD34 in HaCaT cells via a p-eIF2α independent mechanism. Therefore, the lack of ATF4, GADD34 and CReP is responsible for the sustained phosphorylation of eIF2α. Finally, our data also showed that UVB selectively modifies PERK and downregulates ATF6α expression but does not induce activation of the IRE1α/XBP1s pathway in HaCaT cells. SIGNIFICANCE: Novel mechanism to explain the prolonged phosphorylation of eIF2α post-UVB irradiation.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Queratinocitos/efectos de la radiación , Factor de Transcripción Activador 4/metabolismo , Línea Celular , Endorribonucleasas/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Humanos , Queratinocitos/metabolismo , Fosforilación , Biosíntesis de Proteínas , Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Factor de Transcripción CHOP/metabolismo , Rayos Ultravioleta/efectos adversos , eIF-2 Quinasa/metabolismo
3.
Mol Cell ; 79(4): 546-560.e7, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32589964

RESUMEN

Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5'TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5' UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes.


Asunto(s)
Complejos Multiproteicos/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Regiones no Traducidas 5' , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Codón Iniciador , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Células HEK293 , Humanos , Complejos Multiproteicos/genética , Factores de Iniciación de Péptidos/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Front Immunol ; 7: 283, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27499755

RESUMEN

The integrated endoplasmic reticulum stress response (IERSR) is an evolutionarily conserved adaptive mechanism that ensures endoplasmic reticulum (ER) homeostasis and cellular survival in the presence of stress including nutrient deprivation, hypoxia, and imbalance of Ca(+) homeostasis, toxins, and microbial infection. Three transmembrane proteins regulate integrated signaling pathways that comprise the IERSR, namely, IRE-1 that activates XBP-1, the pancreatic ER kinase (PERK) that phosphorylates the eukaryotic translation initiation factor 2 and transcription factor 6 (ATF6). The roles of IRE-1, PERK, and ATF4 in viral and some bacterial infections are well characterized. The role of IERSR in infections by intracellular parasites is still poorly understood, although one could anticipate that IERSR may play an important role on the host's cell response. Recently, our group reported the important aspects of XBP-1 activation in Leishmania amazonensis infection. It is, however, necessary to address the relevance of the other IERSR branches, together with the possible role of IERSR in infections by other Leishmania species, and furthermore, to pursue the possible implications in the pathogenesis and control of parasite replication in macrophages.

5.
J Am Heart Assoc ; 2(5): e000238, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-24008080

RESUMEN

BACKGROUND: Vascular calcification is a common feature in patients with chronic kidney disease (CKD). CKD increases serum levels of tumor necrosis factor-α (TNFα), a critical mediator of vascular calcification. However, the molecular mechanism by which TNFα promotes CKD-dependent vascular calcification remains obscure. The purpose of the present study was to investigate whether TNFα-induced vascular calcification in CKD is caused by the endoplasmic reticulum response involving protein kinase RNA-like endoplasmic reticulum kinase (PERK), eukaryotic initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). METHODS AND RESULTS: We examined the effects of TNFα on the endoplasmic reticulum (ER) stress response of vascular smooth muscle cells (VSMCs). TNFα treatment drastically induced the PERK-eIF2α-ATF4-CHOP axis of the ER stress response in VSMCs. PERK, ATF4, and CHOP shRNA-mediated knockdowns drastically inhibited mineralization and osteogenesis of VSMCs induced by TNFα. CKD induced by 5/6 nephrectomies activated the PERK-eIF2α-ATF4-CHOP axis of the ER stress response in the aortas of ApoE-/- mice with increased aortic TNFα expression and vascular calcification. Treatment of 5/6 nephrectomized ApoE-/- mice with the TNFα neutralizing antibody or chemical Chaperones reduced aortic PERK-eIF2α-ATF4-CHOP signaling of the ER stress increased by CKD. This resulted in the inhibition of CKD-dependent vascular calcification. CONCLUSIONS: These results suggest that TNFα induces the PERK-eIF2α-ATF4-CHOP axis of the ER stress response, leading to CKD-dependent vascular calcification.


Asunto(s)
Factor de Transcripción Activador 4/fisiología , Estrés del Retículo Endoplásmico/fisiología , Factor de Transcripción CHOP/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Calcificación Vascular/etiología , eIF-2 Quinasa/fisiología , Animales , Células Cultivadas , Retículo Endoplásmico , Masculino , Ratones , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA