Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Adv Exp Med Biol ; 1460: 27-71, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287848

RESUMEN

The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronize them with daily cycles. While the central clock in the suprachiasmatic nucleus (SCN) is mainly synchronized by the light/dark cycles, the peripheral clocks react to other stimuli, including the feeding/fasting state, nutrients, sleep-wake cycles, and physical activity. During the disruption of circadian rhythms due to genetic mutations or social and occupational obligations, incorrect arrangement between the internal clock system and environmental rhythms leads to the development of obesity. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition leads to uncoupling of the peripheral clocks from the central pacemaker and to the development of metabolic disorders. The strong coupling of the SCN to the light-dark cycle creates a situation of misalignment when food is ingested during the "wrong" time of day. Food-anticipatory activity is mediated by a self-sustained circadian timing, and its principal component is a food-entrainable oscillator. Modifying the time of feeding alone greatly affects body weight, whereas ketogenic diet (KD) influences circadian biology, through the modulation of clock gene expression. Night-eating behavior is one of the causes of circadian disruption, and night eaters have compulsive and uncontrolled eating with severe obesity. By contrast, time-restricted eating (TRE) restores circadian rhythms through maintaining an appropriate daily rhythm of the eating-fasting cycle. The hypothalamus has a crucial role in the regulation of energy balance rather than food intake. While circadian locomotor output cycles kaput (CLOCK) expression levels increase with high-fat diet-induced obesity, peroxisome proliferator-activated receptor-alpha (PPARα) increases the transcriptional level of brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like 1 (BMAL1) in obese subjects. In this context, effective timing of chronotherapies aiming to correct SCN-driven rhythms depends on an accurate assessment of the SCN phase. In fact, in a multi-oscillator system, local rhythmicity and its disruption reflects the disruption of either local clocks or central clocks, thus imposing rhythmicity on those local tissues, whereas misalignment of peripheral oscillators is due to exosome-based intercellular communication.Consequently, disruption of clock genes results in dyslipidemia, insulin resistance, and obesity, while light exposure during the daytime, food intake during the daytime, and sleeping during the biological night promote circadian alignment between the central and peripheral clocks. Thus, shift work is associated with an increased risk of obesity, diabetes, and cardiovascular diseases because of unusual eating times as well as unusual light exposure and disruption of the circadian rhythm.


Asunto(s)
Ritmo Circadiano , Conducta Alimentaria , Obesidad , Obesidad/fisiopatología , Obesidad/metabolismo , Obesidad/etiología , Ritmo Circadiano/fisiología , Humanos , Animales , Conducta Alimentaria/fisiología , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/fisiopatología , Dieta Cetogénica/efectos adversos , Relojes Circadianos/fisiología , Relojes Circadianos/genética
2.
Adv Exp Med Biol ; 1460: 199-229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287853

RESUMEN

The action of protein kinases and protein phosphatases is essential for multiple physiological responses. Each protein kinase displays its own unique substrate specificity and a regulatory mechanism that may be modulated by association with other proteins. Protein kinases are classified as dual-specificity kinases and dual-specificity phosphatases. Dual-specificity phosphatases are important signal transduction enzymes that regulate various cellular processes in coordination with protein kinases and play an important role in obesity. Impairment of insulin signaling in obesity is largely mediated by the activation of the inhibitor of kappa B-kinase beta and the c-Jun N-terminal kinase (JNK). Oxidative stress and endoplasmic reticulum (ER) stress activate the JNK pathway which suppresses insulin biosynthesis. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are important for proper regulation of glucose metabolism in mammals at both the hormonal and cellular levels. Additionally, obesity-activated calcium/calmodulin dependent-protein kinase II/p38 suppresses insulin-induced protein kinase B phosphorylation by activating the ER stress effector, activating transcription factor-4. To alleviate lipotoxicity and insulin resistance, promising targets are pharmacologically inhibited. Nifedipine, calcium channel blocker, stimulates lipogenesis and adipogenesis by downregulating AMPK and upregulating mTOR, which thereby enhances lipid storage. Contrary to the nifedipine, metformin activates AMPK, increases fatty acid oxidation, suppresses fatty acid synthesis and deposition, and thus alleviates lipotoxicity. Obese adults with vascular endothelial dysfunction have greater endothelial cells activation of unfolded protein response stress sensors, RNA-dependent protein kinase-like ER eukaryotic initiation factor-2 alpha kinase (PERK), and activating transcription factor-6. The transcriptional regulation of adipogenesis in obesity is influenced by AGC (protein kinase A (PKA), PKG, PKC) family signaling kinases. Obesity may induce systemic oxidative stress and increase reactive oxygen species in adipocytes. An increase in intracellular oxidative stress can promote PKC-ß activation. Activated PKC-ß induces growth factor adapter Shc phosphorylation. Shc-generated peroxides reduce mitochondrial oxygen consumption and enhance triglyceride accumulation and lipotoxicity. Liraglutide attenuates mitochondrial dysfunction and reactive oxygen species generation. Co-treatment of antiobesity and antidiabetic herbal compound, berberine with antipsychotic drug olanzapine decreases the accumulation of triglyceride. While low-dose rapamycin, metformin, amlexanox, thiazolidinediones, and saroglitazar protect against insulin resistance, glucagon-like peptide-1 analog liraglutide inhibits palmitate-induced inflammation by suppressing mTOR complex 1 (mTORC1) activity and protects against lipotoxicity.


Asunto(s)
Obesidad , Humanos , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Animales , Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Terapia Molecular Dirigida , Resistencia a la Insulina , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
3.
Neuropsychiatr Dis Treat ; 20: 1693-1710, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39279880

RESUMEN

Background: Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation technique that shows promise for the treatment of Parkinson's disease (PD). However, there is still limited understanding of the optimal stimulation frequencies and whether rTMS can alleviate PD symptoms by regulating the CaMKII-CREB-BMAL1 pathway. Methods: A PD mouse model was induced intraperitoneally with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and treated with 1 Hz, 5 Hz, and 10 Hz rTMS. The neurological function, survival of dopaminergic neurons, and protein levels of Tyrosine hydroxylase (TH), α-synuclein(α-syn), and brain-derived neurotrophic factor (BDNF) in the striatum were measured to determine the optimal stimulation frequencies of rTMS treatment in PD mice. The levels of melatonin, cortisol, and the circadian rhythm of Brain and muscle ARNT-like 1 (BMAL1) in PD model mice were detected after optimal frequency rTMS treatment. Additionally, KN-93 and Bmal1siRNA interventions were used to verify that rTMS could alleviate PD symptoms by regulating the CaMKII-CREB-BMAL1 pathway. Results: Administration of 10 Hz rTMS significantly improved neurological function, increased the protein levels of TH and BDNF, and inhibited abnormal aggregation of a-syn. Furthermore, administration of 10 Hz rTMS regulated the secretion profile of cortisol and melatonin and reversed the circadian arrhythmia of BMAL1 expression. After the KN-93 intervention, the MPTP+rTMS+KN-93 group exhibited decreased levels of P- Ca2+/calmodulin-dependent protein kinase II (CaMKII)/CaMKII, P-cAMP-response-element-binding protein (CREB)/CREB, BMALI, and TH. After Bmal1siRNA intervention, the protein levels of BMAL1 and TH were significantly reduced in the MPTP+10 Hz+ Bmal1siRNA group. At the same time, there were no significant changes in the proportions of P-CaMKIIα/CaMKIIα and P-CREB/CREB expression levels. Finally, immunohistochemical analysis showed that the number of TH-positive neurons was high in the MPTP+10 Hz group, but decreased significantly after KN-93 and Bmal1siRNA interventions. Conclusion: Treatment with 10 Hz rTMS alleviated MPTP-induced PD symptoms by regulating the CaMKII-CREB-BMAL1 pathway. This study provides a comprehensive perspective of the therapeutic mechanisms of rTMS in PD.

4.
J Biol Chem ; 300(9): 107606, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059491

RESUMEN

Transcription factors are challenging to target with small-molecule inhibitors due to their structural plasticity and lack of catalytic sites. Notable exceptions include naturally ligand-regulated transcription factors, including our prior work with the hypoxia-inducible factor (HIF)-2 transcription factor, showing that small-molecule binding within an internal pocket of the HIF-2α Per-Aryl hydrocarbon Receptor Nuclear Translocator (ARNT)-Sim (PAS)-B domain can disrupt its interactions with its dimerization partner, ARNT. Here, we explore the feasibility of targeting small molecules to the analogous ARNT PAS-B domain itself, potentially opening a promising route to modulate several ARNT-mediated signaling pathways. Using solution NMR fragment screening, we previously identified several compounds that bind ARNT PAS-B and, in certain cases, antagonize ARNT association with the transforming acidic coiled-coil containing protein 3 transcriptional coactivator. However, these ligands have only modest binding affinities, complicating characterization of their binding sites. We address this challenge by combining NMR, molecular dynamics simulations, and ensemble docking to identify ligand-binding "hotspots" on and within the ARNT PAS-B domain. Our data indicate that the two ARNT/transforming acidic coiled-coil containing protein 3 inhibitors, KG-548 and KG-655, bind to a ß-sheet surface implicated in both HIF-2 dimerization and coactivator recruitment. Furthermore, while KG-548 binds exclusively to the ß-sheet surface, KG-655 can additionally bind within a water-accessible internal cavity in ARNT PAS-B. Finally, KG-279, while not a coactivator inhibitor, exemplifies ligands that preferentially bind only to the internal cavity. All three ligands promoted ARNT PAS-B homodimerization, albeit to varying degrees. Taken together, our findings provide a comprehensive overview of ARNT PAS-B ligand-binding sites and may guide the development of more potent coactivator inhibitors for cellular and functional studies.

5.
J Agric Food Chem ; 72(19): 10805-10813, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38712504

RESUMEN

Aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) mediate the responses of adaptive metabolism to various xenobiotics. Here, we found that BoAhR and BoARNT are highly expressed in the midgut of Bradysia odoriphaga larvae. The expression of BoAhR and BoARNT was significantly increased after exposure to imidacloprid and phoxim. The knockdown of BoAhR and BoARNT significantly decreased the expression of CYP6SX1 and CYP3828A1 as well as P450 enzyme activity and caused a significant increase in the sensitivity of larvae to imidacloprid and phoxim. Exposure to ß-naphthoflavone (BNF) significantly increased the expression of BoAhR, BoARNT, CYP6SX1, and CYP3828A1 as well as P450 activity and decreased larval sensitivity to imidacloprid and phoxim. Furthermore, CYP6SX1 and CYP3828A1 were significantly induced by imidacloprid and phoxim, and the silencing of these two genes significantly reduced larval tolerance to imidacloprid and phoxim. Taken together, the BoAhR/BoARNT pathway plays key roles in larval tolerance to imidacloprid and phoxim by regulating the expression of CYP6SX1 and CYP3828A1.


Asunto(s)
Proteínas de Insectos , Insecticidas , Larva , Neonicotinoides , Nitrocompuestos , Receptores de Hidrocarburo de Aril , Animales , Insecticidas/farmacología , Larva/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo , Neonicotinoides/farmacología , Neonicotinoides/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Dípteros/metabolismo , Dípteros/genética , Dípteros/efectos de los fármacos , Dípteros/crecimiento & desarrollo , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Inactivación Metabólica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Curr Issues Mol Biol ; 46(5): 4924-4934, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38785563

RESUMEN

Humans are persistently exposed to massive amounts of blue light via sunlight, computers, smartphones, and similar devices. Although the positive and negative effects of blue light on living organisms have been reported, its impact on learning and memory remains unknown. Herein, we examined the effects of widespread blue light exposure on the learning and memory abilities of blue light-exposed mice. Ten-week-old male ICR mice were divided into five groups (five mice/group) and irradiated with blue light from a light-emitting diode daily for 6 months. After 6 months of blue light irradiation, mice exhibited a decline in memory and learning abilities, assessed using the Morris water maze and step-through passive avoidance paradigms. Blue light-irradiated mice exhibited a decreased expression of the clock gene brain and muscle arnt-like 1 (Bmal1). The number of microglia and levels of M1 macrophage CC-chemokine receptor 7 and inducible nitric oxide synthase were increased, accompanied by a decrease in M2 macrophage arginase-1 levels. Levels of angiopoietin-like protein 2 and inflammatory cytokines interleukin-6, tumor necrosis factor-α, and interleukin-1ß were elevated. Our findings suggest that long-term blue light exposure could reduce Bmal1 expression, activate the M1 macrophage/Angptl2/inflammatory cytokine pathway, induce neurodegeneration, and lead to a decline in memory.

8.
Int J Environ Health Res ; : 1-11, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38590026

RESUMEN

The roles of aryl hydrocarbon receptor (AhR), AhR-nuclear translocator (ARNT), and AhR repressor (AhRR) genes in the elevation of cord blood IgE (CbIgE) remained unclear. Our aims were to determine the polymorphisms of AhR, ARNT, and AhRR genes, cord blood AhR (CBAhR) level, and susceptibility to elevation of CbIgE. 206 infant-mother pairs with CbIgE>=0.35 IU/ml and 421 randomly selected controls recruited from our previous study. Genotyping was determined using TaqMan assays. Statistical analysis showed AhR rs2066853 (GG vs. AA+AG: adjusted OR (AOR)=1.5, 95%CI=1.10-2.31 and AOR=1.60, 95%CI=1.06-2.43, respectively) and the combination of AhR rs2066853 and maternal total IgE (mtIgE)>=100 IU/ml were significantly correlated with CbIgE>=0.35 IU/ml or CbIgE>=0.5 IU/ml. CBAhR in a random subsample and CbIgE levels were significantly higher in infants with rs2066853GG genotype. We suggest that infant AhR rs2066853 and their interactions with mtIgE>=100 IU/ml significantly correlate with elevated CbIgE, but AhRR and ARNT polymorphisms do not.

9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 402-408, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660843

RESUMEN

OBJECTIVE: To explore the expression of basic helix-loop-helix ARNT like 2 (BMAL2) in acute myeloid leukemia (AML) patients and its correlation with prognosis, and analyze its effects on the aerobic glycolysis and proliferation of AML cells. METHODS: The expressions of BMAL2 in bone marrow mononuclear cells (BMMCs) of AML patients and normal control group were detected by RT-qPCR. The correlation of BMAL2 expression with prognosis of AML patients was analyzed using public database of National Center for Biotechnology Information (NCBI). The interfering in BMAL2 expression of HL-60 and Kasumi-1 cells was performed using lentiviral vector-mediated shRNA. Cell glucose metabolism and proliferation were detected by using glucose uptake experiment, lactate content test, CCK-8 assay and cell colony formation test. RESULTS: The expression level of BMAL2 mRNA in BMMCs of AML patients was significantly higher than normal control group (P < 0.01). The overall survival time of AML patients with high expression of BMAL2 was significantly shorter than those with low expression of BMAL2 (P < 0.05). Knockdown of BMAL2 significantly reduced glucose uptake and lactate production in AML cell line HL-60 and Kasumi-1 cells. The results of RT-PCR and Western blot showed that BMAL2 promoted aerobic glycolysis by enhancing the expression of HIF1A in AML cells, thereby promoting cell proliferation. CONCLUSION: BMAL2 is highly expressed in AML patients, and promotes aerobic glycolysis by enhancing the expression of HIF1A, thereby promoting cell proliferation.


Asunto(s)
Factores de Transcripción ARNTL , Glucólisis , Leucemia Mieloide Aguda , Humanos , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Células de la Médula Ósea/metabolismo , Línea Celular Tumoral , Proliferación Celular , Células HL-60 , Leucemia Mieloide Aguda/metabolismo , Pronóstico
10.
Mol Biol Rep ; 51(1): 488, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578426

RESUMEN

In recent years, mitochondria have gained significant interest in the field of biomedical research due to their impact on human health and ageing. As mitochondrial dynamics are strongly controlled by clock genes, misalignment of the circadian rhythm leads to adverse metabolic health effects. In this review, by exploring various aspects of research and potential links, we hope to update the current understanding of the intricate relationship between DRP1-mediated mitochondrial dynamics and changes in circadian rhythmicity leading to health issues. Thus, this review addresses the potential bidirectional relationships between DRP1-linked mitochondrial function and circadian rhythm misalignment, their impact on different metabolic pathways, and the potential therapeutics for metabolic and systemic disorders.


Asunto(s)
Ritmo Circadiano , Dinaminas , Mitocondrias , Humanos , Ritmo Circadiano/genética , Dinaminas/genética , Dinaminas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo
11.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474006

RESUMEN

The lipopolysaccharide (LPS) that resides on the outermost surface and protects Gram-negative bacteria from host defenses is one of the key components leading to Salmonella infection, particularly the endotoxic lipid A domain of LPS. Lipid A modifications have been associated with several genes such as the arnT that encodes 4-amino-4-deoxy-L-arabinose transferase, which can be critical for bacteria to resist cationic antimicrobial peptides and interfere with host immune recognition. However, the association of arnT with virulence is not completely understood. Thus, this study aimed to elucidate the interrelationship of the major lipid A modification gene arnT with Salmonella Typhimurium virulence. We observed that the arnT-deficient S. Typhimurium (JOL2943), compared to the wild type (JOL401), displayed a significant decrease in several virulence phenotypes such as polymyxin B resistance, intracellular survival, swarming, and biofilm and extracellular polymeric substance (EPS) production. Interestingly, the cell-surface hydrophobicity, adhesion, and invasion characteristics remained unaffected. Additionally, LPS isolated from the mutant induced notably lower levels of endotoxicity-related cytokines in RAW and Hela cells and mice, particularly IL-1ß with a nine-fold decrease, than WT. In terms of in vivo colonization, JOL2943 showed diminished presence in internal organs such as the spleen and liver by more than 60%, while ileal infectivity remained similar to JOL401. Overall, the arnT deletion rendered the strain less virulent, with low endotoxicity, maintained gut infectivity, and reduced colonization in internal organs. With these ideal characteristics, it can be further explored as a potential attenuated Salmonella strain for therapeutics or vaccine delivery systems.


Asunto(s)
Lípido A , Salmonella typhimurium , Humanos , Animales , Ratones , Salmonella typhimurium/genética , Lípido A/química , Lipopolisacáridos/química , Virulencia , Matriz Extracelular de Sustancias Poliméricas , Células HeLa , Proteínas Bacterianas/genética
12.
Int J Biochem Cell Biol ; 169: 106538, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38320728

RESUMEN

Circadian genes play an important role in the field of drug metabolism. Flavin-containing monooxygenase 3 is a well-known phase I enzyme which participates in metabolism of many exogenous and endogenous substances, especially production of trimethylamine N-oxide. Here, we aimed to decipher diurnal rhythms of flavin-containing monooxygenase 3 expression and activity, and explore the regulation mechanism by clock genes. Our results showed that its mRNA and protein exhibited robust diurnal rhythms in mouse liver and cell lines. Consistently, significant alterations were observed for in vitro microsomal N-oxidation rates of procainamide, which kept in line with its protein expression at different time in wild-type and reverse erythroblastosis virus α knockout mice. Further, flavin-containing monooxygenase 3 was negatively regulated by E4 promoter-binding protein 4 in AML12 and Hepa1-6 cells, while it was positively influenced by reverse erythroblastosis virus α and brain and muscle ARNT-like protein-1. Moreover, luciferase reporter assays and electrophoretic mobility shift assays showed E4 promoter-binding protein 4 inhibited the transcription of flavin-containing monooxygenase 3 by binding to a D-box1 element (-1606/-1594 bp), while brain and muscle ARNT-like protein-1 positively activated the transcription via direct binding to three E-boxes (-863/-858 bp, -507/-498 bp, and -115/-104 bp) in this enzyme promoter. Taken together, this study would be helpful to reveal the mechanism of clock-controlled drug metabolism and facilitate the practice of chrono-therapeutics.


Asunto(s)
Ritmo Circadiano , Oxigenasas , Animales , Ratones , Ratones Endogámicos , Oxigenasas/genética , Oxigenasas/metabolismo , Hígado/metabolismo
13.
Chem Biol Drug Des ; 103(1): e14354, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37743322

RESUMEN

Jasminoidin (JAS) can alleviate ischemic stroke (IS) injury, but its molecular mechanism remains undefined. The polarization of microglia affects IS process. This research is powered to probe whether the molecular mechanism of JAS for IS treatment is coupled with microglia polarization. IS modeling in mice was accomplished by middle cerebral artery occlusion (MCAO) and model mice were injected with 25 and 50 mg/mL JAS, followed by determination of infarct volume, brain water content, and histological changes in mouse brains. The microglia modeling was performed by 1-h oxygen-glucose deprivation and 24-h reoxygenation. Oxygen-glucose deprivation/reoxygenation (OGD/R)-induced microglia were treated with JAS and transfected with Per-Arnt-Sim kinase (PASK)-overexpressing plasmid, subsequent to which cell viability and lactate dehydrogenase (LDH) level were determined. The mRNA or protein expressions of examined genes in microglia and brain tissues were detected by quantitative real-time polymerase chain reaction or western blot. MCAO-induced massive infarction, edema, and injury in mouse brain tissues, upregulated interleukin-1 beta (IL-1ß), FcγRIIB (CD32), tumor necrosis factor alpha (TNF-α), PASK, p-eukaryotic elongation factor 1A1 (EEF1A1), and p-EEF1A1/EEF1A1 levels, but downregulated mannose receptor 1 (CD206), arginase-1 (Arg-1) and interleukin-10 (IL-10), and EEF1A1 expressions, which was reversed by JAS. OGD/R treatment decreased microglial viability as well as expressions of CD206, Arg-1, IL-10, and EEF1A1, yet increased cytotoxicity and levels of IL-1ß, CD32, TNF-α, PASK, p-EEF1A1, and p-EEF1A1/EEF1A1, which was reversed by JAS. PASK overexpression reversed the effects of JAS on microglia. JAS reduces IS injury by regulating microglia polarization via PASK-EEF1A1 axis.


Asunto(s)
Isquemia Encefálica , Iridoides , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Ratones , Animales , Microglía , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-10/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Oxígeno/metabolismo , Glucosa/farmacología
14.
J Mol Biol ; 436(3): 168296, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37797832

RESUMEN

The Aryl hydrocarbon Receptor (AhR) is a well-known sensor of xenobiotics; moreover, it is considered a promising drug target as it is involved in the regulation of many patho-physiological processes. For these reasons the study of its ligand-activated transcription mechanism has stimulated several studies for over twenty years. In this review we highlight the key role of molecular structural information in understanding the different steps of the signaling mechanism. The architecture of the AhR cytosolic complex, encompassing the hsp90 chaperone protein and the XAP2 and p23 co-chaperones, has become available in the last year thanks to Cryo-EM experiments. The structure of the AhR ligand-binding (PAS-B) domain has remained elusive for a long time; it has been predicted by homology modelling, based on known PAS systems, and its ligand-bound forms were modelled through ligand molecular docking. Although very recently some structural information on this domain has become available, considerable efforts are still needed to determine the binding geometries of the AhR key ligands by experimental high-resolution studies. On the other hand, the dimeric structure of AhR with the ARNT protein, bound to the specific DNA responsive element, was partially determined by X-ray crystallography and it was completed by homology modelling. On the whole the current structural knowledge of the main protein complexes that form over the AhR mechanism opens the way to confirm and further investigate the main steps of the proposed ligand-activated transcription mechanism of the AhR.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Receptores de Hidrocarburo de Aril , Proteínas HSP90 de Choque Térmico/química , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Receptores de Hidrocarburo de Aril/química , Cristalografía por Rayos X , Multimerización de Proteína , Humanos
15.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961463

RESUMEN

Transcription factors are generally challenging to target with small molecule inhibitors due to their structural plasticity and lack of catalytic sites. Notable exceptions to this include a number of transcription factors which are naturally ligand-regulated, a strategy we have successfully exploited with the heterodimeric HIF-2 transcription factor, showing that a ligand-binding internal pocket in the HIF-2α PAS-B domain could be utilized to disrupt its dimerization with its partner, ARNT. Here, we explore the feasibility of directly targeting small molecules to the structurally similar ARNT PAS-B domain, potentially opening a promising route to simultaneously modulate several ARNT-mediated signaling pathways. Using solution NMR screening of an in-house fragment library, we previously identified several compounds that bind ARNT PAS-B and, in certain cases, antagonize ARNT association with the TACC3 transcriptional coactivator. However, these ligands only have mid-micromolar binding affinities, complicating characterization of their binding sites. Here we combine NMR, MD simulations, and ensemble docking to identify ligand-binding 'hotspots' on and within the ARNT PAS-B domain. Our data indicate that the two ARNT/TACC3 inhibitors, KG-548 and KG-655, bind to a ß-sheet surface implicated in both HIF-2 dimerization and coactivator recruitment. Furthermore, KG-548 binds exclusively to the ß-sheet surface, while KG-655 binds to the same site but can also enter a water-accessible internal cavity in ARNT PAS-B. Finally, KG-279, while not a coactivator inhibitor, exemplifies ligands that preferentially bind only to the internal cavity. Taken together, our findings provide a comprehensive overview of ARNT PAS-B ligand-binding sites and may guide the development of more potent coactivator inhibitors for cellular and functional studies.

16.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961567

RESUMEN

Injured neurons sense environmental cues to balance neural protection and axon regeneration, but the mechanisms are unclear. Here, we unveil aryl hydrocarbon receptor (AhR), a ligand-activated bHLH-PAS transcription factor, as molecular sensor and key regulator of acute stress response at the expense of axon regeneration. We demonstrate responsiveness of DRG sensory neurons to ligand-mediated AhR signaling, which functions to inhibit axon regeneration. Ahr deletion mimics the conditioning lesion in priming DRG to initiate axonogenesis gene programs; upon peripheral axotomy, Ahr ablation suppresses inflammation and stress signaling while augmenting pro-growth pathways. Moreover, comparative transcriptomics revealed signaling interactions between AhR and HIF-1α, two structurally related bHLH-PAS α units that share the dimerization partner Arnt/HIF-1ß. Functional assays showed that the growth advantage of AhR-deficient DRG neurons requires HIF-1α; but in the absence of Arnt, DRG neurons can still mount a regenerative response. We further unveil a link between bHLH-PAS transcription factors and DNA hydroxymethylation in response to peripheral axotomy, while neuronal single cell RNA-seq analysis revealed a link of the AhR regulon to RNA polymerase III regulation and integrated stress response (ISR). Altogether, AhR activation favors stress coping and inflammation at the expense of axon regeneration; targeting AhR can enhance nerve repair.

17.
Biochem Pharmacol ; 216: 115798, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37696456

RESUMEN

The aryl hydrocarbon receptor (AHR) signaling pathway is a complex regulatory network that plays a critical role in various biological processes, including cellular metabolism, development, and immune responses. The complexity of AHR signaling arises from multiple factors, including the diverse ligands that activate the receptor, the expression level of AHR itself, and its interaction with the AHR nuclear translocator (ARNT). Additionally, the AHR crosstalks with the AHR repressor (AHRR) or other transcription factors and signaling pathways and it can also mediate non-genomic effects. Finally, posttranslational modifications of the AHR and its interaction partners, epigenetic regulation of AHR and its target genes, as well as AHR-mediated induction of enzymes that degrade AHR-activating ligands may contribute to the context-specificity of AHR activation. Understanding the complexity of AHR signaling is crucial for deciphering its physiological and pathological roles and developing therapeutic strategies targeting this pathway. Ongoing research continues to unravel the intricacies of AHR signaling, shedding light on the regulatory mechanisms controlling its diverse functions.


Asunto(s)
Neoplasias , Receptores de Hidrocarburo de Aril , Humanos , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Epigénesis Genética , Neoplasias/genética , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
18.
Cells ; 12(18)2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37759548

RESUMEN

Persistent organic pollutants (POPs) accumulation and hypoxia are two factors proposed to adversely alter adipose tissue (AT) functions in the context of excess adiposity. Studies have shown that preadipocytes exposure to dioxin and dioxin-like POPs have the greatest deleterious impact on rodent and immortalized human preadipocyte differentiation, but evidence on human preadipocytes is lacking. Additionally, hypoxia is known to strongly interfere with the dioxin-response pathway. Therefore, we tested the effects of pre-differentiation polychlorinated biphenyl (PCB)126 exposure at 10 µM for 3 days and subsequent differentiation under hypoxia on human subcutaneous adipocytes (hSA) differentiation, glucose uptake and expression of selected metabolism- and inflammation-related genes. Pre-differentiation PCB126 exposure lowered the adenosine triphosphate (ATP) content, glucose uptake and leptin expression of mature adipocytes but had limited effects on differentiation under normoxia (21% O2). Under hypoxia (3% O2), preadipocytes ability to differentiate was significantly reduced as reflected by significant decreased lipid accumulation and downregulation of key adipocyte genes such as peroxisome proliferator-activated receptor gamma (PPARγ) and adiponectin. Hypoxia increased glucose uptake and glucose transporter 1 (GLUT1) expression but abolished the adipocytes insulin response and GLUT4 expression. The expression of pro-inflammatory adipokine interleukin-6 (IL-6) was slightly increased by both PCB126 and hypoxia, while IL-8 expression was significantly increased only following the PCB126-hypoxia sequence. These observations suggest that PCB126 does not affect human preadipocyte differentiation, but does affect the subsequent adipocytes population, as reflected by lower ATP levels and absolute glucose uptake. On the other hand, PCB126 and hypoxia exert additive effects on AT inflammation, an important player in the development of chronic diseases such as type 2 diabetes and cardiovascular diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dioxinas , Bifenilos Policlorados , Humanos , Adipoquinas , Bifenilos Policlorados/toxicidad , Adenosina Trifosfato , Glucosa , Proliferación Celular
19.
bioRxiv ; 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37502902

RESUMEN

Steroid receptor coactivators (SRCs) comprise a family of three paralogous proteins commonly recruited by eukaryotic transcription factors. Each SRC harbors two tandem Per-ARNT-Sim (PAS) domains that are broadly distributed that bind small molecules and regulate interactions. Using computational docking, solution NMR, mass spectrometry, and molecular dynamics simulations, we show that the SRC1 PAS-B domain can bind to certain prostaglandins (PGs) either non-covalently to a surface that overlaps with the site used to engage transcription factors or covalently to a single, specific, conserved cysteine residue next to a solvent accessible hydrophobic pocket. This pocket is in proximity to the canonical transcription factor binding site, but on the opposite side of the domain, suggesting a potential mode of regulating transcriptional activator-coactivator interactions.

20.
Ann Clin Microbiol Antimicrob ; 22(1): 60, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454128

RESUMEN

BACKGROUND: Colistin (CST) is a last-line drug for multidrug-resistant Gram-negative bacterial infections. CST-heteroresistant Enterobacter cloacae complex (ECC) has been isolated. However, integrated analysis of epidemiology and resistance mechanisms based on the complete ECC species identification has not been performed. METHODS: Clinical isolates identified as "E. cloacae complex" by MALDI-TOF MS Biotyper Compass in a university hospital in Japan were analyzed. Minimum inhibitory concentrations of CST were determined by the broth microdilution method. The population analysis profiling (PAP) was performed for detecting the heteroresistant phenotype. The heat shock protein 60 (hsp60) cluster was determined from its partial nucleotide sequence. From the data of whole-genome sequencing, average nucleotide identity (ANI) for determining ECC species, multilocus sequence type, core genome single-nucleotide-polymorphism-based phylogenetic analysis were performed. phoPQ-, eptA-, and arnT-deleted mutants were established to evaluate the mechanism underlying colistin heteroresistance. The arnT mRNA expression levels were determined by reverse transcription quantitative PCR. RESULTS: Thirty-eight CST-resistant isolates, all of which exhibited the heteroresistant phenotype by PAP, were found from 138 ECC clinical isolates (27.5%). The prevalence of CST-resistant isolates did not significantly differ among the origin of specimens (29.0%, 27.8%, and 20.2% for respiratory, urine, and blood specimens, respectively). hsp60 clusters, core genome phylogeny, and ANI revealed that the CST-heteroresistant isolates were found in all or most of Enterobacter roggenkampii (hsp60 cluster IV), Enterobacter kobei (cluster II), Enterobacter chuandaensis (clusters III and IX), and Enterobacter cloacae subspecies (clusters XI and XII). No heteroresistant isolates were found in Enterobacter hormaechei subspecies (clusters VIII, VI, and III) and Enterobacter ludwigii (cluster V). CST-induced mRNA upregulation of arnT, which encodes 4-amino-4-deoxy-L-arabinose transferase, was observed in the CST-heteroresistant isolates, and it is mediated by phoPQ pathway. Isolates possessing mcr-9 and mcr-10 (3.6% and 5.6% of total ECC isolates, respectively) exhibited similar CST susceptibility and PAP compared with mcr-negative isolates. CONCLUSIONS: Significant prevalence (approximately 28%) of CST heteroresistance is observed in ECC clinical isolates, and they are accumulated in specific species and lineages. Heteroresistance is occurred by upregulation of arnT mRNA induced by CST. Acquisition of mcr genes contributes less to CST resistance in ECC.


Asunto(s)
Colistina , Infecciones por Enterobacteriaceae , Humanos , Colistina/farmacología , Antibacterianos/farmacología , Enterobacter cloacae , Prevalencia , Filogenia , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/microbiología , Nucleótidos , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA