Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Reprod Biol ; 24(3): 100918, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38924877

RESUMEN

Apelin and APJ have been shown to regulate female reproductive functions. However, its uterine expression during the oestrous cycle and its regulation by ovarian steroids, along with gonadotropin regulation in the ovary, has not been investigated. This study aimed to analyze the steroid-dependent uterine expression of apelin/APJ in the uterus along with the oestrous cycle. Furthermore, it also aimed to investigate gonadotropin-dependent ovarian expression of apelin and APJ. To investigate the uterine expression of apelin and APJ during estrous cycle in mice, uterus at different estrous stage were collected. To explore the ovarian steroids dependent expression of apelin system in the uterus, ovariectomized mice were treated with only estrogen at dose of 30 ng/g, only progesterone at dose of 150 µg/g and combined doses. To study the effect of gonadotropin on ovarian expression of apelin system, immature mice were injected with 2.5 IU of pregnant mare serum gonadotropin (PMSG) alone and both PMSG plus 2.5 IU of chorionic gonadotropin (hCG). Apelin and APJ protein expression are modulated by estrous phases in the uterus. The uterine apelin and APJ expression are up-regulated by estrogen and down-regulated by progesterone. The expression and localization of APJ showed increased abundance in the follicles of PMSG treated mice, however, the PMSG plus HCG treatment showed formation of corpus luteum with increased abundance of APJ and progesterone secretion. The expression of apelin and APJ are regulated by pituitary gonadotropin in the ovary and uterine apelin system by ovarian steroid hormone.


Asunto(s)
Receptores de Apelina , Apelina , Ovario , Progesterona , Útero , Animales , Femenino , Ratones , Apelina/metabolismo , Receptores de Apelina/metabolismo , Gonadotropina Coriónica/farmacología , Estrógenos/farmacología , Estrógenos/metabolismo , Ciclo Estral/metabolismo , Ciclo Estral/fisiología , Gonadotropinas Equinas/farmacología , Ovariectomía , Ovario/metabolismo , Ovario/efectos de los fármacos , Progesterona/farmacología , Progesterona/metabolismo , Útero/metabolismo , Útero/efectos de los fármacos
2.
Front Pharmacol ; 15: 1413463, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881868

RESUMEN

Introduction: Hepatocellular carcinoma (HCC) has been a highly common and pathological disease worldwide, while current therapeutic regimens have limitations. Chebulae Fructus, a common herbal medicine in Asia, has been documented to exert potential therapeutic effects on HCC in ancient medicine clinical practice. However, the molecular mechanism underlying its inhibitory effects on HCC requires further investigation. Methods: In this study, the anti-HCC effect of the aqueous extract of Chebulae Fructus (CFE) on human HCC and its underlying mechanism were evaluated. Assays including CCK8, EdU staining, crystal violet staining, cell clone formation, flow cytometry, wound healing, and transwell were used in vitro. The cell-derived xenograft (CDX) and patient-derived xenograft (PDX) models were used in vivo. Transcriptomics analysis, qRT-PCR, ELISA, IHC staining, and Western blotting were employed to determine the mechanism of action of CFE. Results: The results demonstrate that CFE effectively suppressed the proliferation and activity of HepG2 and PLC/PRF/5 HCC cells. CFE also induced apoptosis, and suppressed the migration and invasion abilities of these cells. Furthermore, CFE exhibited inhibitory effects on tumor growth in both H22 and PLC/PRF/5 mouse models, as well as in an HCC PDX model which is derived from patient tumor samples. Moreover, it was identified that CFE treatment specifically suppressed the Apelin/APJ system in HCC cells and tumor tissues. To investigate the role of the Apelin/APJ system in mediating the effects of CFE treatment, an APJ overexpressed cell model is established. Interestingly, it was found that the overexpression of APJ significantly diminished the inhibitory effects of CFE on HCC in vitro. Discussion: Collectively, this study provides compelling evidence that CFE exerts significant anti-HCC effects in cell and animal models. Moreover, our findings suggest that the Apelin/APJ system may play a vital role in the therapeutic effects of CFE against HCC.

3.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167257, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38795836

RESUMEN

Apelin receptor (APJ), a member of the class A family of G protein-coupled receptor (GPCR), plays a crucial role in regulating cardiovascular and central nervous systems function. APJ influences the onset and progression of various diseases such as hypertension, atherosclerosis, and cerebral stroke, making it an important target for drug development. Our preliminary findings indicate that APJ can form homodimers, heterodimers, or even higher-order oligomers, which participate in different signaling pathways and have distinct functions compared with monomers. APJ homodimers can serve as neuroprotectors against, and provide new pharmaceutical targets for vascular dementia (VD). This review article aims to summarize the structural characteristics of APJ dimers and their roles in physiology and pathology, as well as explore their potential pharmacological applications.


Asunto(s)
Receptores de Apelina , Multimerización de Proteína , Humanos , Receptores de Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/química , Animales , Transducción de Señal , Aterosclerosis/metabolismo , Demencia Vascular/metabolismo , Demencia Vascular/patología , Hipertensión/metabolismo , Hipertensión/patología
4.
Cytokine ; 179: 156639, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38733946

RESUMEN

AIMS: Polycystic ovarian syndrome (PCOS) is one of the most common (about 5-20%) reproductive disorders in women of reproductive age; it is characterized by polycystic ovaries, hyperandrogenism, and oligo/ anovulation. The levels and expression of ovarian adipokines are deregulated in the PCOS. Apelin is an adipokine that acts through its receptor (APJ) and is known to express in the various tissues including the ovary. It has also been suggested that apelin and APJ could be targeted as therapeutic adjuncts for the management of PCOS. However, no study has been conducted on the management of PCOS by targeting the apelin system. Thus, we aimed to evaluate its impact on combating PCOS-associated ovarian pathogenesis. METHODS: The current work employed a letrozole-induced-hyperandrogenism PCOS-like mice model to investigate the effects of apelin13 and APJ, antagonist ML221. The PCOS model was induced by oral administration of letrozole (1 mg/kg) for 21 days. A total of four experimental groups were made, control, PCOS control, PCOS + aplein13, and PCOS + ML221. The treatment of apelin13 and ML221 was given from day 22 for two weeks. KEY FINDINGS: The letrozole-induced PCOS-like features such as hyperandrogenism, cystic follicle, decreased corpus luteum, elevated levels of LH/FSH ratio, and up-regulation of ovarian AR expression were ameliorated by apelin13 and ML221 treatment. However, the PCOS-augmented oxidative stress and apoptosis were suppressed by apelin 13 treatments only. ML221 treatment still showed elevated oxidative stress and stimulated apoptosis as reflected by decreased antioxidant enzymes and increased active caspase3 and Bax expression. The expression of ERs was elevated in all groups except control. Furthermore, the PCOS model showed elevated expression of APJ and apelin13 treatment down-regulated its own receptor. Overall, observing the ovarian histology, corpus luteum formation, and decreased androgen levels by both apelin13 and ML221 showed ameliorative effects on the cystic ovary. SIGNIFICANCE: Despite the similar morphological observation of ovarian histology, apelin13 and ML221 exhibited opposite effects on oxidative stress and apoptosis. Therefore, apelin13 (which down-regulates APJ) and ML221 (an APJ antagonist) may have suppressed APJ signalling, which would account for our findings on the mitigation of polycystic ovarian syndrome. In conclusion, both apelin13 and ML221 mediated mitigation have different mechanisms, which need further investigation.


Asunto(s)
Receptores de Apelina , Apelina , Letrozol , Ovario , Síndrome del Ovario Poliquístico , Letrozol/farmacología , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Animales , Femenino , Receptores de Apelina/metabolismo , Ratones , Apelina/metabolismo , Ovario/metabolismo , Ovario/patología , Ovario/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Hiperandrogenismo/metabolismo , Hiperandrogenismo/inducido químicamente , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad
5.
Front Chem ; 12: 1382319, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690013

RESUMEN

Introduction: 3D pharmacophore models describe the ligand's chemical interactions in their bioactive conformation. They offer a simple but sophisticated approach to decipher the chemically encoded ligand information, making them a valuable tool in drug design. Methods: Our research summarized the key studies for applying 3D pharmacophore models in virtual screening for 6,944 compounds of APJ receptor agonists. Recent advances in clustering algorithms and ensemble methods have enabled classical pharmacophore modeling to evolve into more flexible and knowledge-driven techniques. Butina clustering categorizes molecules based on their structural similarity (indicated by the Tanimoto coefficient) to create a structurally diverse training dataset. The learning method combines various individual pharmacophore models into a set of pharmacophore models for pharmacophore space optimization in virtual screening. Results: This approach was evaluated on Apelin datasets and afforded good screening performance, as proven by Receiver Operating Characteristic (AUC score of 0.994 ± 0.007), enrichment factor of (EF1% of 50.07 ± 0.211), Güner-Henry score of 0.956 ± 0.015, and F-measure of 0.911 ± 0.031. Discussion: Although one of the high-scoring models achieved statistically superior results in each dataset (AUC of 0.82; an EF1% of 19.466; GH of 0.131 and F1-score of 0.071), the ensemble learning method including voting and stacking method balanced the shortcomings of each model and passed with close performance measures.

6.
Heliyon ; 10(7): e28620, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38590887

RESUMEN

Objectives: This study aimed to assess the diagnostic, risk stratification, and prognostic capabilities of apelin-13 and APJ in comparison to procalcitonin (PCT) for septic patients presenting to the emergency department (ED). Methods: Two hundred and thirty-eight patients meeting the Third International Consensus Definition (Sepsis-3) criteria were enrolled from Beijing Chaoyang Hospital's ED, along with a control group of forty healthy individuals. Patients were categorized into two groups based on disease severity: those with sepsis or septic shock. Plasma levels of apelin-13, CD4+ Th cells, and PCT were measured. The expression levels of plasma APJ mRNA were quantified using real-time fluorescence quantitative PCR (RT-qPCR) methodology. The Sequential Organ Failure Assessment (SOFA) score was determined at the time of enrollment. The prognostic values of apelin-13 and APJ was evaluated in comparison to that of PCT and the SOFA score. All patients were followed up for a duration of 28 days. Results: The plasma concentrations of apelin-13 and APJ exhibited a positive correlation with the severity of sepsis, while the number of CD4+ T cells decreased in septic patients. The areas under the receiver operating characteristic (AUC) curves for apelin-13 and APJ in the diagnosis and prediction of 28-day mortality were greater than that of PCT. In non-survivors at the 28-day follow-up, the plasma levels of apelin-13 and APJ were significantly higher compared to survivors. Furthermore, apelin-13 levels were notably higher in cases of sepsis-induced cardiomyopathy (SICM) than in those without SICM. Apelin-13 and APJ emerged as independent predictors of 28-day mortality among septic patients. Conclusions: Apelin-13 and APJ demonstrate value in the assessment of risk stratification, early diagnosis, and prognosis of sepsis in the ED. Apelin-13 also proves to be an effective biomarker for assessing the prognosis of SICM in the ED. Sepsis may lead to immune function suppression.

7.
Exp Neurol ; 378: 114802, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38679280

RESUMEN

Pyroptosis signifies a significant form of programmed neuronal demise subsequent to ischemic stroke. In our prior investigations, we demonstrated that the Elabela (ELA)-Apelin receptor (APJ) axis alleviated neuronal death by improving collateral circulation and mitigating ferroptosis in a murine model of middle cerebral artery occlusion (MCAO). However, the connection between ELA and neuronal pyroptosis remains further elucidation. Here, we observed an upregulation of ELA and APJ expression in both murine brain specimens and cultured HT-22 hippocampal neurons exposed to experimental ischemic stroke. ELA administration markedly diminished the infarct size in comparison to controls. ELA treatment ameliorated neurological deficits and anxiety-like symptoms in mice with stroke, concurrently inhibiting pyroptosis and mitochondria fission in neurons. Conversely, ELA knockdown yielded the opposite effects. Utilizing RNA-sequencing analysis, we identified a candidate for pyroptosis priming, Z-DNA-binding protein 1 (ZBP1), which was suppressed in ELA-treated HT-22 neurons during oxygen-glucose deprivation/reperfusion (OGD/R). Subsequent co-immunoprecipitation analyses demonstrated the binding between APJ and ZBP1. Specifically, APJ suppressed ZBP1 to inhibit NLRP3 inflammasome activation and dynamin-related protein 1-mediated mitochondrial fission in neurons. In summary, our findings suggest that ELA functions as a stroke-induced signal limiting neuronal pyroptosis and mitochondrial fission via APJ/ZBP1 signaling, thereby underscoring ELA as a potential therapeutic target for ischemic stroke treatment.


Asunto(s)
Accidente Cerebrovascular Isquémico , Dinámicas Mitocondriales , Neuronas , Piroptosis , Transducción de Señal , Animales , Masculino , Ratones , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Ratones Endogámicos C57BL , Dinámicas Mitocondriales/fisiología , Dinámicas Mitocondriales/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Piroptosis/fisiología , Piroptosis/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/fisiología
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167125, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38508477

RESUMEN

Scarring, a prevalent issue in clinical settings, is characterized by the excessive generation of extracellular matrix within the skin tissue. Among the numerous regulatory factors implicated in fibrosis across various organs, the apelin/APJ axis has emerged as a potential regulator of fibrosis. Given the shared attribute of heightened extracellular matrix production between organ fibrosis and scarring, we hypothesize that the apelin/APJ axis also plays a regulatory role in scar development. In this study, we examined the expression of apelin and APJ in scar tissue, normal skin, and fibroblasts derived from these tissues. We investigated the impact of the hypoxic microenvironment in scars on apelin/APJ expression to identify the transcription factors influencing apelin/APJ expression. Through overexpressing or knocking down apelin/APJ expression, we observed their effects on fibroblast secretion of extracellular matrix proteins. We further validated these effects in animal experiments while exploring the underlying mechanisms. Our findings demonstrated that the apelin/APJ axis is expressed in fibroblasts from keloid, hypertrophic scar, and normal skin. The regulation of apelin/APJ expression by the hypoxic environment in scars plays a significant role in hypertrophic scar and keloid development. This regulation promotes extracellular matrix secretion through upregulation of TGF-ß1 expression via the PI3K/Akt/CREB1 pathway.


Asunto(s)
Cicatriz Hipertrófica , Queloide , Animales , Apelina/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Fibrosis , Queloide/metabolismo , Fosfatidilinositol 3-Quinasas , Humanos
9.
Mol Biol Rep ; 51(1): 74, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175266

RESUMEN

BACKGROUND: Mechanical Ventilation (MV) is an essential mechanism of life support in the clinic. It may also lead to ventilator-induced acute lung injury (VILI) due to local alveolar overstretching and/or repeated alveolar collapse. However, the pathogenesis of VILI is not completely understood, and its occurrence and development may be related to physiological processes such as the inflammatory response, oxidative stress, and apoptosis. Some studies have found that the the apelin/APJ axis is an endogenous antagonistic mechanism activated during acute respiratory distress syndrome(ARDS), that can counteract the injury response and prevent uncontrolled lung injury. To indicate that apelin-13 plays a protective role in VILI, an animal model of VILI was established in this study to explore whether apelin-13 can alleviate VILI in rats by inhibiting inflammation, apoptosis and oxidative stress. METHODS: SD rats were divided into four groups: control, high tidal volume, high tidal volume + normal saline and high tidal volume + apelin-13. After tracheotomy, the rats in control maintained spontaneous breathing, and the other rats were connected to the small animal ventilator for 4 h to establish the rat VILI model. The mRNA expression of apelin was measured by real-time quantitative polymerase chain reaction(qRT-PCR), immunofluorescence and Western blotting(WB) were used to detect the expression level of APJ, and WB was used to detect the expression of the apoptotic proteins Bax and bcl-2. The degree of lung injury was evaluated by pathological staining of lung tissue,W/D ratio, and BALF total protein concentration. The expression of inflammatory factors(IL-1ß, IL-6, TNF-α) in alveolar lavage fluid was measured using ELISA. The activities of MPO and cat and the content of MDA, an oxidative product, in lung tissue were measured to evaluate the degree of oxidative stress in the lung. RESULTS: After treatment with apelin-13, the apelin/APJ axis in the lung tissue of VILI model rats was activated, and the effect was further enhanced. The pathological damage of lung tissue was alleviated, the expression of the antiapoptotic protein Bcl-2 and the proapoptotic protein Bax was reversed, and the levels of the inflammatory cytokines IL-1ß, IL-6, TNF-α levels were all decreased. MPO activity and MDA content decreased, while CAT activity increased. CONCLUSION: The apelin/apj axis is activated in VILI. Overexpression of apelin-13 further plays a protective role in VILI, mainly by including reducing pathological damage, the inflammatory response, apoptosis and antioxidant stress in lung tissue, thus delaying the occurrence and development of VILI.


Asunto(s)
Lesión Pulmonar Aguda , Síndrome de Dificultad Respiratoria , Animales , Ratas , Ratas Sprague-Dawley , Apelina/farmacología , Interleucina-6 , Factor de Necrosis Tumoral alfa , Proteína X Asociada a bcl-2/genética , Ventiladores Mecánicos
10.
Biochim Biophys Acta Biomembr ; 1866(3): 184289, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278504

RESUMEN

The apelinergic system encompasses two peptide ligand families, apelin and apela, along with the apelin receptor (AR or APJ), a class A G-protein-coupled receptor. This system has diverse physiological effects, including modulating heart contraction, vasodilation/constriction, glucose regulation, and vascular development, with involvement in a variety of pathological conditions. Apelin peptides have been previously shown to interact with and become structured upon binding to anionic micelles, consistent with a membrane-catalyzed mechanism of ligand-receptor binding. To overcome the challenges of observing nuclear magnetic resonance (NMR) spectroscopy signals of a dilute peptide in biological environments, 19F NMR spectroscopy, including diffusion ordered spectroscopy (DOSY) and saturation transfer difference (STD) experiments, was used herein to explore the membrane-interactive behaviour of apelin. NMR-optimized apelin-17 analogues with 4-trifluoromethyl-phenylalanine at various positions were designed and tested for bioactivity through ERK activation in stably-AR transfected HEK 293 T cells. Far-UV circular dichroism (CD) spectropolarimetry and 19F NMR spectroscopy were used to compare the membrane interactions of these analogues with unlabelled apelin-17 in both zwitterionic/neutral and net-negative bicelle conditions. Each analogue binds to bicelles with relatively weak affinity (i.e., in fast exchange on the NMR timescale), with preferential interactions observed at the cationic residue-rich N-terminal and mid-length regions of the peptide leaving the C-terminal end unencumbered for receptor recognition, enabling a membrane-anchored fly-casting mechanism of peptide search for the receptor. In all, this study provides further insight into the membrane-interactive behaviour of an important bioactive peptide, demonstrating interactions and biophysical behaviour that cannot be neglected in therapeutic design.


Asunto(s)
Hormonas Peptídicas , Humanos , Apelina/metabolismo , Ligandos , Células HEK293 , Hormonas Peptídicas/química , Catálisis
11.
Front Pharmacol ; 14: 1276488, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026926

RESUMEN

ELABELA (ELA), also known as Toddler or Apela, is a novel endogenous ligand of the angiotensin receptor AT1-related receptor protein (APJ). ELA is highly expressed in human embryonic, cardiac, and renal tissues and involves various biological functions, such as embryonic development, blood circulation regulation, and maintaining body fluid homeostasis. ELA is also closely related to the occurrence and development of acute kidney injury, hypertensive kidney damage, diabetic nephropathy, renal tumors, and other diseases. Understanding the physiological role of ELA and its mechanism of action in kidney-related diseases would provide new targets and directions for the clinical treatment of kidney diseases.

12.
Ageing Res Rev ; 91: 102076, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37776977

RESUMEN

Elabela (ELA), Apela or Toddler peptide is a hormone peptide belonging to the adipokine group and a component of apelinergic system, discovered in 2013-2014. Given its high homology with apelin, the first ligand of APJ receptor, ELA likely mediates similar effects. Increasing evidence shows that ELA has a critical function not only in embryonic development, but also in adulthood, contributing to physiological and pathological conditions, such as the onset of age-related diseases (ARD). However, still little is known about the mechanisms and molecular pathways of ELA, as well as its precise functions in ARD pathophysiology. Here, we report the mechanisms by which ELA/APJ signaling acts in a very complex network of pathways for the maintenance of physiological functions of human tissue and organs, as well as in the onset of some ARD, where it appears to play a central role. Therefore, we describe the possibility to use the ELA/APJ pathway, as novel biomarker (predictive and diagnostic) and target for personalized treatments of ARD. Its potentiality as an optimal peptide candidate for therapeutic ARD treatments is largely described, also detailing potential current limitations.


Asunto(s)
Hormonas Peptídicas , Embarazo , Femenino , Humanos , Hormonas Peptídicas/química , Hormonas Peptídicas/metabolismo , Receptores de Apelina/metabolismo , Transducción de Señal , Envejecimiento
13.
Free Radic Biol Med ; 208: 759-770, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37774802

RESUMEN

BACKGROUND: Preeclampsia is a placentally induced syndrome with diverse clinical presentation that currently has no cure. Oxidative stress is a potent inducer of placental dysfunction. The apelin receptor (APJ) system is a pleiotropic pathway with a potential for therapeutic targeting in preeclampsia. This study examines the alteration of circulating apelin levels and placental APJ expression in preeclampsia and investigates whether apelin/APJ system can protect placental trophoblast from hypoxia-induced oxidative stress injury through PI3K/AKT signaling pathway. RESULTS: Our results confirmed that maternal apelin concentration was increased in women with preeclampsia, but APJ expression was reduced in the preeclamptic placentas. Apelin-13 treatment not only specifically attenuated CoCl2-induced superoxide production, but also prevented CoCl2-induced reduction of SOD activity and SOD1 expression. In addition, apelin-13 suppressed CoCl2-induced apoptosis by increasing the expression of bcl-2/bax ratio and by decreasing the expression of active caspase-3 in placental trophoblasts. Furthermore, we found that apelin-13 binding APJ activated the PI3K and AKT kinases and inhibition of PI3K kinase significantly blocked the anti-oxidative effects of apelin-13 in placental trophoblasts. CONCLUSIONS: Decrease of placental APJ expression is associated with oxidative stress-induced placental dysfunction in preeclampsia, and increased circulating apelin could be a moderately successful marker to differentiate subjects with preeclampsia from healthy pregnant women. Inhibition of superoxide production and caspase-3 cleavage, together with upregulation of SOD activity/expression and bcl-2/bax ratio, could be the potential molecular mechanisms by which apelin-13/APJ protects placental trophoblasts from oxidative stress injury.


Asunto(s)
Estrés Oxidativo , Preeclampsia , Trofoblastos , Femenino , Humanos , Embarazo , Apelina/genética , Apelina/metabolismo , Apelina/farmacología , Proteína X Asociada a bcl-2/metabolismo , Caspasa 3/metabolismo , Hipoxia/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Preeclampsia/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Trofoblastos/metabolismo
14.
Life Sci ; 332: 122041, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37657526

RESUMEN

Stroke can induce cardiac dysfunction without a primary cardiac disease. Exercise can promote the overall rehabilitation of stroke patients and be beneficial for all kinds of heart diseases. However, the mechanisms underlying the protective effects of exercise in stroke-induced cardiac dysfunction are poorly understood. Hence, we aimed to distinguish the different effects of acute and long-term exercise and further study the mechanism of protection against cardiomyopathy caused by stroke. Mice underwent a single acute session or long-term exercise for 30 days, followed by middle cerebral artery occlusion surgery. The expression of apoptosis-related proteins and proinflammatory factors in the heart was evaluated. Then, overexpression of apelin peptide jejunum (APJ) transfected adeno-associated virus type 9 (AAV9) and inhibition of signal transducer and activator of transcription 3 (STAT3) by Stattic were used in stroke mice or hypoxic cardiomyocytes. ML221 were used to inhibit APJ activity in exercise mouse. Thereafter, changes in apoptotic and proinflammatory factors were evaluated. The results demonstrated that chronic exercise prevented myocardial inflammation, apoptosis and cardiac dysfunction after stroke. However, acute exercise did not have similar effects. Exercise maintained the levels of APJ expression and decreased phosphorylated-STAT3 (p-STAT3) activation to protect cardiomyocytes. Moreover, APJ overexpression promoted cardiomyocyte survival and reduced p-STAT3 levels. STAT3 inhibition also reduced apoptosis and proinflammatory factors in mice hearts. Conversely, the protective effect of exercise was eliminated by APJ inhibition. This study showed that exercise can maintain APJ expression and inhibit p-STAT3, thus, conferring protection against myocardial inflammation and apoptosis induced by stroke.

15.
Neuropeptides ; 102: 102382, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37716179

RESUMEN

Depression is a debilitating neuropsychological disorder characterized by high incidence, high recurrence, high suicide, and high disability rates, which poses serious threats to human health and imposes heavy psychological and economic burdens on family and society. The pathogenesis of depression is extremely complex, and its etiology is multifactorial. Mounting evidence suggests that apelin and apelin receptor APJ, which compose the apelin/APJ system, are related to the development of depression. However, the specific mechanism is still unclear, and research in this area in human is still insufficient. Acceleration of research into the regulatory effects and underlying mechanisms of the apelin/APJ system in depression may identify attractive therapeutic targets and contribute to the development of novel intervention strategies against this devastating psychological disorder. In this review, we mainly discuss the regulatory effects of apelin/APJ system on depression and its potential therapeutic applications.


Asunto(s)
Depresión , Receptores Acoplados a Proteínas G , Humanos , Apelina , Depresión/tratamiento farmacológico , Receptores de Apelina
16.
Biomed Pharmacother ; 166: 115268, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562237

RESUMEN

Apelin and Elabela (Ela) are peptides encoded by APLN and APELA, respectively, which act on their receptor APJ and play crucial roles in the body. Recent research has shown that they not only have important effects on the endocrine system, but also promote vascular development and maintain the homeostasis of myocardial cells. From a molecular biology perspective, we explored the roles of Ela and apelin in the cardiovascular system and summarized the mechanisms of apelin-APJ signaling in the progression of myocardial infarction, ischemia-reperfusion injury, atherosclerosis, pulmonary arterial hypertension, preeclampsia, and congenital heart disease. Evidences indicated that apelin and Ela play important roles in cardiovascular diseases, and there are many studies focused on developing apelin, Ela, and their analogues for clinical treatments. However, the literature on the therapeutic potential of apelin, Ela and their analogues and other APJ agonists in the cardiovascular system is still limited. This review summarized the regulatory pathways of apelin/ELA-APJ axis in cardiovascular function and cardiovascular-related diseases, and the therapeutic effects of their analogues in cardiovascular diseases were also included.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Femenino , Humanos , Embarazo , Apelina/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Hormonas Peptídicas/genética , Hormonas Peptídicas/metabolismo , Hormonas Peptídicas/farmacología , Hormonas Peptídicas/uso terapéutico , Transducción de Señal
17.
Theranostics ; 13(10): 3387-3401, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351176

RESUMEN

Rationale: Ischemia-reperfusion injury (I/R) is a common cause of acute kidney injury (AKI). Post-ischemic recovery of renal blood supply plays an important role in attenuating injury. Exogenous application of elabela (ELA) peptides has been demonstrated by us and others to alleviate AKI, partly through its receptor APJ. However, the endogenous role of ELA in renal I/R remains unclear. Methods: Renal tubule specific ELA knockout (ApelaKsp KO) mice challenged with bilateral or unilateral I/R were used to investigate the role of endogenous ELA in renal I/R. RNA-sequencing analysis was performed to unbiasedly investigate altered genes in kidneys of ApelaKsp KO mice. Injured mice were treated with ELA32 peptide, Nω-hydroxy-nor-L-arginine (nor-NOHA), prostaglandin E2 (PGE2), Paricalcitol, ML221 or respective vehicles, individually or in combination. Results: ELA is mostly expressed in renal tubules. Aggravated pathological injury and further reduction of renal microvascular blood flow were observed in ApelaKsp KO mice during AKI and the following transition to chronic kidney disease (AKI-CKD). RNA-seq analysis suggested that two blood flow regulators, arginine metabolizing enzyme arginase 2 (ARG2) and PGE2 metabolizing enzyme carbonyl reductases 1 and 3 (CBR1/3), were altered in injured ApelaKsp KO mice. Notably, combination application of an ARG2 inhibitor nor-NOHA, and Paricalcitol, a clinically used activator for PGE2 synthesis, alleviated injury-induced AKI/AKI-CKD stages and eliminated the worst outcomes observed in ApelaKsp KO mice. Moreover, while the APJ inhibitor ML221 blocked the beneficial effects of ELA32 peptide on AKI, it showed no effect on combination treatment of nor-NOHA and Paricalcitol. Conclusions: An endogenous tubular ELA-APJ axis regulates renal microvascular blood flow that plays a pivotal role in I/R-induced AKI. Furthermore, improving renal blood flow by inhibiting ARG2 and activating PGE2 is an effective treatment for AKI and prevents the subsequent AKI-CKD transition.


Asunto(s)
Lesión Renal Aguda , Hormonas Peptídicas , Insuficiencia Renal Crónica , Daño por Reperfusión , Ratones , Animales , Microcirculación , Dinoprostona/farmacología , Riñón/patología , Lesión Renal Aguda/patología , Insuficiencia Renal Crónica/etiología , Daño por Reperfusión/patología , Isquemia/patología , Hormonas Peptídicas/efectos adversos , Hormonas Peptídicas/genética , Reperfusión/efectos adversos
18.
Life Sci ; 328: 121892, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364634

RESUMEN

The apelin receptor (APJ) and the opioid-related nociceptin receptor 1 (ORL1) are family A G protein-coupled receptors that participate in a variety of physiological processes. The distribution and function of APJ and ORL1 in the nervous system and peripheral tissues are similar; however, the detailed mechanism of how these two receptors modulate signaling and physiological effects remains unclear. Here, we examined whether APJ and ORL1 form dimers, and investigated signal transduction pathways. The endogenous co-expression of APJ and ORL1 in SH-SY5Y cells was confirmed by western blotting and RT-PCR. Bioluminescence and fluorescence resonance energy transfer assays, as well as a proximity ligation assay and co-immunoprecipitation experiments, demonstrated that APJ and ORL1 heterodimerize in HEK293 cells. We found that the APJ-ORL1 heterodimer is selectively activated by apelin-13, which causes the dimer to couple to Gαi proteins and reduce the recruitment of GRKs and ß-arrestins to the dimer. We showed that the APJ-ORL1 dimer exhibits biased signaling, in which G protein-dependent signaling pathways override ß-arrestin-dependent signaling pathways. Our results demonstrate that the structural interface of the APJ-ORL1 dimer switches from transmembrane domain TM1/TM2 in the inactive state to TM5 in the active state. We used mutational analysis and BRET assays to identify key residues in TM5 (APJ L2185.55, APJ I2245.61, and ORL1 L2295.52) responsible for the receptor-receptor interaction. These results provide important information on the APJ-ORL1 heterodimer and may assist the design of new drugs targeting biased signaling pathways for treatment of pain and cardiovascular and metabolic diseases.


Asunto(s)
Neuroblastoma , Humanos , Apelina/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides/genética , Receptores Opioides/metabolismo , Transducción de Señal
19.
Neurochem Int ; 167: 105545, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37169180

RESUMEN

In the central nervous system (CNS), the apelin/APJ system is broadly expressed. According to some studies, activation of this system protects against excitotoxicity mediated by N-methyl-D-aspartate (NMDA) receptors and exerts neuroprotective effects. However, the role of this system in epilepsy remains unclear. In the present study, immunofluorescence staining and western blotting were used to assess APJ localization and expression in the brains of mice with recurrent spontaneous seizures induced by kainic acid (KA). Behavior and local field potentials (LFPs) were assessed in mice with KA-induced seizures. Susceptibility to seizures was assessed in a pentylenetetrazole (PTZ)-induced seizure model. Whole-cell patch-clamp recordings were used to evaluate the role of the apelin/APJ system in regulating synaptic transmission in brain slices from mice in which Mg2+-free medium was used to induce seizures. NMDA receptor GluN2B subunit expression and phosphorylation of GluN2B at Ser1480 were measured in the mouse hippocampus. APJ was primarily localized in neurons, and its expression was upregulated in the epileptic brain. APJ activation after KA-induced status epilepticus (SE) reduced epileptic activity, whereas APJ inhibition aggravated epileptic activity. In the PTZ model, APJ activation reduced and APJ inhibition increased susceptibility to seizures. The apelin/APJ system affected NMDA receptor-mediated postsynaptic currents in patch-clamp recordings. Moreover, APJ regulated the levels of GluN2B phosphorylated at Ser1480 and the abundance of cell-surface GluN2B in neurons. Furthermore, endocytosis of the NMDA receptor GluN2B subunit was regulated by the apelin/APJ system. Together, our findings indicate that the apelin/APJ system modulates seizure activity and may be a novel therapeutic target for epilepsy.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Convulsiones , Animales , Ratones , Apelina/metabolismo , Endocitosis , Ácido Kaínico/toxicidad , Pentilenotetrazol/toxicidad , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Transmisión Sináptica
20.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175743

RESUMEN

The apelinergic system is a highly conserved pleiotropic system. It comprises the apelin receptor apelin peptide jejunum (APJ) and its two peptide ligands, Elabela/Toddler (ELA) and apelin, which have different spatiotemporal localizations. This system has been implicated in the regulation of the adipoinsular axis, in cardiovascular and central nervous systems, in carcinogenesis, and in pregnancy in humans. During pregnancy, the apelinergic system is essential for embryo cardiogenesis and vasculogenesis and for placental development and function. It may also play a role in the initiation of labor. The apelinergic system seems to be involved in the development of placenta-related pregnancy complications, such as preeclampsia (PE) and intrauterine growth restriction, but an improvement in PE-like symptoms and birth weight has been described in murine models after the exogenous administration of apelin or ELA. Although the expression of ELA, apelin, and APJ is altered in human PE placenta, data related to their circulating levels are inconsistent. This article reviews current knowledge about the roles of the apelinergic system in pregnancy and its pathophysiological roles in placenta-related complications in pregnancy. We also discuss the challenges in translating the actors of the apelinergic system into a marker or target for therapeutic interventions in obstetrics.


Asunto(s)
Hormonas Peptídicas , Preeclampsia , Embarazo , Femenino , Humanos , Ratones , Animales , Apelina/metabolismo , Placenta/metabolismo , Hormonas Peptídicas/metabolismo , Placentación , Preeclampsia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA