Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Life Sci ; 337: 122348, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38103725

RESUMEN

Our previous work has demonstrated protein kinase D2 (PKD2) played a critical influence in experimental colitis in animal. However, the role of PKD2 in human norovirus (HuNoVs)-induced diarrhea remained unknown. Aquaporin 3 (AQP3) expression, a critical protein mediating diarrhea, was assessed by western blot, qRT-PCR in intestinal epithelial cells (IECs). Luciferase, IF, IP and ChIP assay were used to explore the mechanism through which HuNoVs regulated AQP3. Herein, we found that AQP3 expression was drastically decreased in IECs in response to VP1 transfection, the major capsid protein of HuNoVs, or HuNoVs infection. Mechanistically, HuNoVs triggered phosphorylation of PKD2 through TLR2/MyD88/IRAK4, which further inhibited AP2γ activation and nuclear translocation, leading to suppress AQP3 transactivation in IECs. Most importantly, PKD2 interacted with MyD88/IRAK4, and VP1 overexpression enhanced this complex form, which, in turn, to increase PKD2 phosphorylation. In addition, endogenous PKD2 interacted with AP2γ, and this interaction was enhanced in response to HuNoVs treatment, and subsequently resulting in AP2γ phosphorylation inhibition. Moreover, inhibition of PKD2 activation could reverse the inhibitory effect of HuNoVs on AQP3 expression. In summary, we established a novel mechanism that HuNoV inhibited AQP3 expression through TLR2/MyD88/IRAK4/PKD2 signaling pathway, targeting PKD2 activity could be a promising strategy for prevention of HuNoVs-induced gastroenteritis.


Asunto(s)
Norovirus , Proteína Quinasa D2 , Animales , Humanos , Acuaporina 3/genética , Acuaporina 3/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Norovirus/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Células Epiteliales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Diarrea
2.
Int J Biol Sci ; 18(11): 4316-4328, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35864973

RESUMEN

Activator Protein 2 gamma (AP-2γ) is a master transcription factor that plays a critical role in the development and progression of breast cancer. However, the underlying mechanism is still unclear. Herein, using a proteomics approach, we identified Tripartite motif-containing 37 (TRIM37) as a novel coactivator of AP-2γ-mediated transcription in breast cancer cells. We demonstrate that TRIM37 facilitates AP-2γ chromatin binding to directly regulate the AP-2γ mediated transcriptional program. We also show that TRIM37 achieves this by stimulating K63 chain-linked ubiquitination of AP-2γ, promoting protein localization from the cytoplasm to the nucleus. In clinical analyses, we find TRIM37 is upregulated in multiple breast cancer datasets, supporting our findings that the TRIM37-AP-2γ interaction is essential for breast cancer tumor growth. Overall, our work reveals that TRIM37 is an oncogenic coactivator of AP-2γ in breast cancer and provides a novel therapeutic target for treating the disease.


Asunto(s)
Neoplasias de la Mama , Factor de Transcripción AP-2 , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Regulación de la Expresión Génica , Humanos , Factor de Transcripción AP-2/genética , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/genética
3.
Cells ; 11(9)2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35563688

RESUMEN

Following the invention of high-throughput sequencing, cancer research focused on investigating disease-related alterations, often inadvertently omitting tumor heterogeneity. This research was intended to limit the impact of heterogeneity on conclusions related to WWOX/AP-2α/AP-2γ in bladder cancer which differently influenced carcinogenesis. The study examined the signaling pathways regulated by WWOX-dependent AP-2 targets in cell lines as biological replicates using high-throughput sequencing. RT-112, HT-1376 and CAL-29 cell lines were subjected to two stable lentiviral transductions. Following CAGE-seq and differential expression analysis, the most important genes were identified and functionally annotated. Western blot was performed to validate the selected observations. The role of genes in biological processes was assessed and networks were visualized. Ultimately, principal component analysis was performed. The studied genes were found to be implicated in MAPK, Wnt, Ras, PI3K-Akt or Rap1 signaling. Data from pathways were collected, explaining the differences/similarities between phenotypes. FGFR3, STAT6, EFNA1, GSK3B, PIK3CB and SOS1 were successfully validated at the protein level. Afterwards, a definitive network was built using 173 genes. Principal component analysis revealed that the various expression of these genes explains the phenotypes. In conclusion, the current study certified that the signaling pathways regulated by WWOX and AP-2α have more in common than that regulated by AP-2γ. This is because WWOX acts as an EMT inhibitor, AP-2γ as an EMT enhancer while AP-2α as a MET inducer. Therefore, the relevance of AP-2γ in targeted therapy is now more evident. Some of the differently regulated genes can find application in bladder cancer treatment.


Asunto(s)
Factores de Transcripción , Neoplasias de la Vejiga Urinaria , Carcinogénesis/genética , Humanos , Fosfatidilinositol 3-Quinasas , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo , Proteínas Supresoras de Tumor/genética , Neoplasias de la Vejiga Urinaria/genética , Oxidorreductasa que Contiene Dominios WW/genética
4.
Cancer Sci ; 112(8): 3190-3204, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34036684

RESUMEN

Alterations of glycosyltransferase expression are often associated with tumor occurrence and progression. Among the many glycosyltransferases, increased expression of fucosyltransferase 8 (FUT8) has been frequently observed to be involved in progression and metastasis of various types of cancer. The regulatory mechanisms of FUT8 expression remain unclear. FUT8 expression was shown, in this study, to be elevated in breast cancer. Systematic analysis revealed that transcription factor activator protein 2γ (AP-2γ) is the target gene of microRNA-10b (miR-10b), which we previously identified as a positive regulator of FUT8. Overexpression of AP-2γ inhibited FUT8 expression, with associated reduction of cell invasiveness and migration ability. AP-2γ was capable of binding to transcription factor STAT3, and phosphorylation of STAT3 induced transcription of the FUT8 gene. On the basis of our findings, we propose that binding of AP-2γ to STAT3 results in formation of the AP-2γ/STAT3 complex and consequent inhibition of STAT3 phosphorylation, thereby preventing entry of p-STAT3 into the nucleus to initiate FUT8 transcription. This study clarifies the molecular mechanisms whereby transcription factor AP-2γ regulates FUT8 expression in breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Fucosiltransferasas/genética , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética , Factor de Transcripción AP-2/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Núcleo Celular/metabolismo , Femenino , Fucosiltransferasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones , Invasividad Neoplásica , Trasplante de Neoplasias , Fosforilación , Factor de Transcripción STAT3/metabolismo , Transcripción Genética
5.
Front Oncol ; 11: 621060, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718178

RESUMEN

INTRODUCTION: The presence of common fragile sites is associated with no-accidental chromosomal instability which occurs prior to carcinogenesis. The WWOX gene spans the second most active fragile site: FRA16D. Chromosomal breakage at this site is more common in bladder cancer patients who are tobacco smokers which suggests the importance of WWOX gene loss regarding bladder carcinogenesis. Tryptophan domains of WWOX are known to recognize motifs of other proteins such as AP-2α and AP-2γ allowing protein-protein interactions. While the roles of both AP-2 transcription factors are important for bladder carcinogenesis, their nature is different. Based on the literature, AP-2γ appears to be oncogenic, whereas AP-2α mainly exhibits tumor suppressor character. Presumably, the interaction between WWOX and both transcription factors regulates thousands of genes, hence the aim of the present study was to determine WWOX, AP-2α, and AP-2γ function in modulating biological processes of bladder cancer. METHODS: RT-112 cell line (grade II bladder cancer) was subjected to two stable lentiviral transductions. Overall, this resulted in six variants to investigate distinct WWOX, AP-2α, or AP-2γ function as well as WWOX in collaboration with a particular transcription factor. Cellular models were examined with immunocytochemical staining and in terms of differences in biological processes using assays investigating cell viability, proliferation, apoptosis, adhesion, clonogenicity, migration, activity of metalloproteinases and 3D culture growth. RESULTS: WWOX overexpression increased apoptosis but decreased cell viability, migration and large spatial colonies. AP-2α overexpression decreased tumor cell viability, migratory potential, matrix metalloproteinase-2 activity and clonogenicity. AP-2γ overexpression decreased matrix metalloproteinase-2 activity but increased wound healing, adhesion, clonogenicity and spatial colony formation. WWOX and AP-2α overexpression induced apoptosis but decreased cell viability, adhesion, matrix metalloproteinase-2 activity, overall number of cultured colonies and migration rate. WWOX and AP-2γ overexpression decreased tumor cell viability, proliferation potential, adhesion, clonogenicity and the ability to create spatial structures, but also increased apoptosis or migration rate. CONCLUSION: Co-overexpression of WWOX with AP-2α or WWOX with AP-2γ resulted in a net anti-tumor effect. However, considering this research findings and the difference between AP-2α and AP-2γ, we suggest that this similarity is due to a divergent behavior of WWOX.

6.
Stem Cell Reports ; 16(1): 106-119, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33382976

RESUMEN

Mammary gland ductal morphogenesis depends on the differentiation of mammary stem cells (MaSCs) into basal and luminal lineages. The AP-2γ transcription factor, encoded by Tfap2c, has a central role in mammary gland development but its effect in mammary lineages and specifically MaSCs is largely unknown. Here, we utilized an inducible, conditional knockout of Tfap2c to elucidate the role of AP-2γ in maintenance and differentiation of MaSCs. Loss of AP-2γ in the basal epithelium profoundly altered the transcriptomes and decreased the number of cells within several clusters of mammary epithelial cells, including adult MaSCs and luminal progenitors. AP-2γ regulated the expression of genes known to be required for mammary development, including Cebpb, Nfkbia, and Rspo1. As a result, AP-2γ-deficient mice exhibited repressed mammary gland ductal outgrowth and inhibition of regenerative capacity. The findings demonstrate that AP-2γ can regulate development of mammary gland structures potentially regulating maintenance and differentiation of multipotent MaSCs.


Asunto(s)
Células Madre Multipotentes/metabolismo , Factor de Transcripción AP-2/genética , Animales , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Noqueados , Células Madre Multipotentes/citología , Inhibidor NF-kappaB alfa/metabolismo , Regeneración , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Trombospondinas/metabolismo , Factor de Transcripción AP-2/deficiencia
7.
BMC Med Genomics ; 13(1): 174, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213447

RESUMEN

BACKGROUND: Among all causes of death, cancer is the most prevalent and is only outpaced by cardiovascular diseases. Molecular theory of carcinogenesis states that apoptosis and proliferation are regulated by groups of tumor suppressors or oncogenes. Transcription factors are example of proteins comprising representatives of both cancer-related groups. Exemplary family of transcription factors which exhibits dualism of function is Activating enhancer-binding Protein 2 (AP-2). Scientific reports concerning their function in carcinogenesis depend on particular family member and/or tumor type which proves the issue to be unsolved. Therefore, the present study examines role of the best-described AP-2 representatives, AP-2α and AP-2γ, through ontological analysis of their target genes and investigation what processes are differentially regulated in 21 cancers using samples deposited in Genomic Data Analysis Center (GDAC) Firehose. METHODS: Expression data with clinical annotation was collected from TCGA-dedicated repository GDAC Firehose. Transcription factor targets were obtained from Gene Transcription Regulation Database (GTRD), TRANScription FACtor database (TRANSFAC) and Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining (TRRUST). Monocle3 R package was used for global samples profiling while Protein ANalysis THrough Evolutionary Relationships (PANTHER) tool was used to perform gene ontology analysis. RESULTS: With RNA-seq data and Monocle3 or PANTHER tools we outlined differences in many processes and signaling pathways, separating tumor from normal tissues or tumors from each other. Unexpectedly, a number of alterations in basal-like breast cancer were identified that distinguished it from other subtypes, which could bring future clinical benefits. CONCLUSIONS: Our findings indicate that while the AP-2α/γ role remains ambiguous, their activity is based on processes that underlie the cancer hallmarks and their expression could have potential in diagnosis of selected tumors.


Asunto(s)
Proteínas de Neoplasias/genética , Neoplasias/genética , Factor de Transcripción AP-2/genética , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/genética , Carcinogénesis/genética , Análisis por Conglomerados , Simulación por Computador , Femenino , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Masculino , Anotación de Secuencia Molecular , Proteínas de Neoplasias/fisiología , RNA-Seq , Transducción de Señal/genética , Factor de Transcripción AP-2/fisiología , Transcripción Genética/genética
8.
J Mol Histol ; 49(5): 449-458, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29992488

RESUMEN

The Par complex (Par-6/Par-3/aPKC) plays a key role in the maintenance of the intestinal barrier function through the regulation of epithelial junction formation. The aryl hydrocarbon receptor (AhR) has been shown to be an important regulator for intestinal homeostasis. In this study, we investigated the role of the AhR activation on the regulation of Par complex. AhR activation by 6-formylindolo (3,2-b) carbazole (FICZ) represses the abnormal expression of the Par complex in a mouse model of dextran sulphate sodium (DSS)-induced colitis. In T84 cells, overexpression of Par-6 causes intestinal barrier dysfunction. Lipopolysaccharide (LPS)-induced intestinal epithelial barrier dysfunction and increase in Par-6 expression was prevented by AhR activation. However, FICZ did not alter the expression of Par-3 or aPKC. Furthermore, AhR activation alleviated LPS-induced increase of Par-6 through repressing the expression of activating protein-2γ (Ap-2γ). These results reveal the protective effects of AhR activation on LPS induced disruption of intestinal epithelial barrier function through suppressing the expression of Par-6 expression. Our findings provide novel insights into the protective role of AhR in intestinal barrier function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Mucosa Intestinal/fisiología , Receptores de Hidrocarburo de Aril/fisiología , Animales , Carbazoles/farmacología , Línea Celular , Colitis/inducido químicamente , Sulfato de Dextran/efectos adversos , Humanos , Uniones Intercelulares , Lipopolisacáridos , Ratones , Receptores de Hidrocarburo de Aril/metabolismo , Factor de Transcripción AP-2/metabolismo
9.
Biochem J ; 475(11): 1965-1977, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29760237

RESUMEN

AP-2 gamma (AP-2γ) is a transcription factor that plays pivotal roles in breast cancer biology. To search for small molecule inhibitors of AP-2γ, we performed a high-throughput fluorescence anisotropy screen and identified a polyoxometalate compound with Wells-Dawson structure K6[P2Mo18O62] (Dawson-POM) that blocks the DNA-binding activity of AP-2γ. We showed that this blocking activity is due to the direct binding of Dawson-POM to AP-2γ. We also provided evidence to show that Dawson-POM decreases AP-2γ-dependent transcription similar to silencing the gene. Finally, we demonstrated that Dawson-POM contains anti-proliferative and pro-apoptotic effects in breast cancer cells. In summary, we identified the first small molecule inhibitor of AP-2γ and showed Dawson-POM-mediated inhibition of AP-2γ as a potential avenue for cancer therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Factor de Transcripción AP-2/antagonistas & inhibidores , Compuestos de Tungsteno/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/fisiopatología , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Cinética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo , Compuestos de Tungsteno/química , Compuestos de Tungsteno/metabolismo
10.
Hum Reprod ; 32(3): 631-642, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28073973

RESUMEN

STUDY QUESTION: How can pre-meiotic germ cells persist in the human foetal ovary? SUMMARY ANSWER: Numerous oogonia escaping meiotic entry were retrieved throughout human ovarian development simultaneously with the expression of signalling pathways preventing meiosis, typically described in the rodent embryonic testis. WHAT IS KNOWN ALREADY: The transition from mitosis to meiosis is a key event in female germ cells that remains poorly documented in research on the human ovary. Previous reports described a strikingly asynchronous differentiation in the human female germ line during development, with the persistence of oogonia among oocytes and follicles during the second and third trimesters. The possible mechanisms allowing some cells to escape meiosis remain elusive. STUDY DESIGN SIZE, DURATION: In order to document the extent of this phenomenon, we detailed the expression profile of germ cell differentiation markers using 73 ovaries ranging from 6.4 to 35 weeks post-fertilization. PARTICIPANTS/MATERIALS SETTING, METHODS: Pre-meiotic markers were detected by immunohistochemistry or qRT-PCR. The expression of the main meiosis-preventing factors identified in mice was analysed, and their functionality assessed using organ cultures. MAIN RESULTS AND THE ROLE OF CHANCE: Oogonia stained for AP2γ could be traced from the first trimester until the end of the third trimester. Female germ cell differentiation is organized both in time and space in a centripetal manner in the foetal human ovary. Unexpectedly, some features usually ascribed to rodent pre-spermatogonia could be observed in human foetal ovaries, such as NANOS2 expression and quiescence in some germ cells. The two main somatic signals known to inhibit meiosis in the mouse embryonic testis, CYP26B1 and FGF9, were detected in the human ovary and act simultaneously to repress STRA8 and meiosis in human foetal female germ cells. LARGE SCALE DATA: N/A. LIMITATIONS REASON FOR CAUTION: Our conclusions relied partly on in vitro experiments. Germ cells were not systematically identified with immunostaining and some may have thus escaped analysis. WIDER IMPLICATIONS OF THE FINDINGS: We found evidence that a robust repression of meiotic entry is taking place in the human foetal ovary, possibly explaining the exceptional long-lasting presence of pre-meiotic germ cells until late gestational age. This result calls for a redefinition of the markers known as classical male markers, which may in fact characterize mammalian developing gonads irrespectively of their sex. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the Université Paris Diderot-Paris 7 and Université Paris-Sud, CEA, INSERM, and Agence de la Biomédecine. The authors declare no conflict of interest.


Asunto(s)
Células Germinales Embrionarias/metabolismo , Meiosis/fisiología , Ovario/embriología , Testículo/embriología , Animales , Proliferación Celular/fisiología , Femenino , Humanos , Masculino , Ratones , Oogonios/citología , Oogonios/metabolismo , Ovario/metabolismo , Transducción de Señal/fisiología , Espermatogonias/citología , Espermatogonias/metabolismo , Testículo/metabolismo
11.
Curr Top Dev Biol ; 117: 471-96, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26969996

RESUMEN

During mammalian embryonic development, the trophectoderm and primitive endoderm give rise to extraembryonic tissues, while the epiblast differentiates into all somatic lineages and the germline. Remarkably, only a few classes of signaling pathways induce the differentiation of these progenitor cells into diverse lineages. Accordingly, the functional outcome of a particular signal depends on the developmental competence of the target cells. Thus, developmental competence can be defined as the ability of a cell to integrate intrinsic and extrinsic cues to execute a specific developmental program toward a specific cell fate. Downstream of signaling, there is the combinatorial activity of transcription factors and their cofactors, which is modulated by the chromatin state of the target cells. Here, we discuss the concept of developmental competence, and the factors that regulate this state with reference to the specification of mammalian primordial germ cells.


Asunto(s)
Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Estratos Germinativos/citología , Animales , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Células Germinativas/metabolismo , Estratos Germinativos/metabolismo , Humanos , Transducción de Señal
12.
Acta Histochem ; 117(8): 752-61, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26315991

RESUMEN

Cryptorchidism is a risk factor for the development of testicular germ cell tumors (TGCTs). The most common type of TGCT in cryptorchidism is seminoma. The intratubular germ cell neoplasia unclassified (ITGCNU) is a histological pattern preceding the development of seminomas and non-seminomas. It was suggested that in patients with cryptorchidism, the gonocytes remained undifferentiated with pluripotent abilities expressing proteins like POU domain class 5 transcription factor 1 (POU5F1), tyrosine kinase receptor c-Kit, placental-like alkaline phosphatase (PLAP), the transcription factor AP2γ and sal-like protein 4 (SALL4) that confer to the gonocytes this ability and therefore make them susceptible to develop ITGCNU. The aim of the present study was to determine if the gonocytes of patients with cryptorchidism express POU5F1, c-Kit, PLAP, AP2γ and SALL4 proteins after their differentiation period. Based on this, we evaluated samples of testicular tissue from newborns to 16-year old subjects with or without cryptorchidism in search of POU5F1, c-Kit, PLAP, AP2γ and SALL4 using immunocytochemical method, the results of which were validated by RT-PCR. The results showed that control subjects witnessed a down-regulation in the expression of these five proteins in the first year of life, which eventually disappeared. On the other hand, it was determined that 21.6% (8/37) of the patients with cryptorchidism continued to express, at least, one of the proteins analyzed in this study after the second year of life. And only 5.4% (2/37) of the patients were positive to the five markers. These data sustain the proposed hypothesis that in cryptorchid patients, ITGCNU arises from gonocytes that fail in their differentiation process to spermatogonia with conservation of the proteins (POU5F1, c-Kit, PLAP, AP2γ and SALL4) that maintain pluripotency and undifferentiated characteristics and which are responsible for making the gonocytes susceptible to malignancy. However, we cannot guarantee that these patients present neoplastic transformation.


Asunto(s)
Criptorquidismo/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Factor de Transcripción AP-2/metabolismo , Factores de Transcripción/metabolismo , Adolescente , Biomarcadores/metabolismo , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Masculino , Espermatozoides/metabolismo , Testículo/metabolismo , Testículo/patología
13.
Folia Histochem Cytobiol ; 53(3): 177-88, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26306513

RESUMEN

This concise review summarises tissue and serum markers useful for differential diagnosis of germ cell tumours (GCT), with focus on the most common testicular GCT (TGCT). GCT are characterised by phenotypic heterogeneity due to largely retained embryonic pluripotency and aberrant somatic differentiation. TGCT that occur in young men are divided into two main types, seminoma and nonseminoma, both derived from a pre-invasive germ cell neoplasia in situ (GCNIS), which originates from transformed foetal gonocytes. In severely dysgenetic gonads, a GCNIS-resembling lesion is called gonadoblastoma. GCT occur rarely in young children (infantile GCT) in whom the pathogenesis is different (no GCNIS/gonadoblastoma stage) but the histopathological features are similar to the adult GCT. The rare spermatocytic tumour of older men is derived from post-pubertal spermatogonia that clonally expand due to gain-of function mutations in survival-promoting genes (e.g. FGFR3, HRAS), thus this tumour has a different expression profile than GCNIS-derived TGCT. Clinically most informative immunohistochemical markers for GCT, except teratoma, are genes expressed in primordial germ cells/gonocytes and embryonic pluripotency-related factors, such as placental-like alkaline phosphatase (PLAP), OCT4 (POU5F1), NANOG, AP-2γ (TFAP2C) and LIN28, which are not expressed in normal adult germ cells. Some of these markers can also be used for immunocytochemistry to detect GCNIS or incipient tumours in semen samples. Gene expression in GCT is regulated in part by DNA and histone modifications, and the epigenetic profile of these tumours is characterised by genome-wide demethylation, except nonseminomas. In addition, a recently discovered mechanism of post-genomic gene expression regulation involves small non-coding RNAs, predominantly micro-RNA (miR). Testicular GCT display micro-RNA profiles similar to embryonic stem cells. Targeted miRNA-based blood tests for miR-371-3 and miR-367 clusters are currently under development and hold a great promise for the future. In some patients miR-based tests may be even more sensitive than the classical serum tumour markers, ß -chorio-gonadotrophin (ß-hCG), α-fetoprotein (AFP) and lactate dehydrogenase (LDH), which are currently used in the clinic. In summary, research advances have provided clinicians with a panel of molecular markers, which allow specific diagnosis of various subtypes of GCT and are very useful for early detection at the precursor stage and for monitoring of patients during the follow-up.


Asunto(s)
Fosfatasa Alcalina/sangre , Biomarcadores de Tumor/sangre , Isoenzimas/sangre , MicroARNs/sangre , Neoplasias de Células Germinales y Embrionarias/diagnóstico , Adulto , Fosfatasa Alcalina/genética , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Isoenzimas/genética , Masculino , MicroARNs/genética , Neoplasias Testiculares/patología , Neoplasias Testiculares/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA