Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 838
Filtrar
1.
Gastroenterology ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251168

RESUMEN

A consistent feature of chronic liver diseases and the hallmark of pathologic repair is the so-called ductular reaction. This is a histological abnormality characterized by an expansion of dysmorphic cholangiocytes inside and around portal spaces infiltrated by inflammatory, mesenchymal, and vascular cells. The ductular reaction is a highly regulated response based on the reactivation of morphogenetic signaling mechanisms and a complex crosstalk among a multitude of cell types. The nature and mechanism of these exchanges determine the difference between healthy regenerative liver repair and pathological repair. An orchestrated signaling among cell types directs mesenchymal cells to deposit a specific extracellular matrix with distinct physical and biochemical properties defined as portal fibrosis. Progression of fibrosis leads to vast architectural and vascular changes known as liver cirrhosis. The signals regulating the ecology of this microenvironment are just beginning to be addressed. Contrary to the tumor microenvironment, immune modulation inside this "benign" microenvironment is scarcely known. One of the reasons is that both the ductular reaction and portal fibrosis have been primarily considered a manifestation of cholestatic liver disease, whereas this phenomenon is also present, albeit with distinctive features, in all chronic human liver diseases. Novel human-derived cellular models and progress in "omics" technologies are increasing our knowledge at a fast pace. Most importantly, this knowledge is on the edge of generating new diagnostic and therapeutic advances. Here, we will critically review the latest advances, in terms of mechanisms, pathophysiology, and treatment prospects. In addition, we will delineate future avenues of research including innovative translational opportunities.

2.
FASEB J ; 38(17): e70038, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39250169

RESUMEN

Metabolic dysfunction-associated diseases often refer to various diseases caused by metabolic problems such as glucose and lipid metabolism disorders. With the improvement of living standards, the increasing prevalence of metabolic diseases has become a severe public health problem, including metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-related liver disease (ALD), diabetes and obesity. These diseases are both independent and interdependent, with complex and diverse molecular mechanisms. Therefore, it is urgent to explore the molecular mechanisms and find effective therapeutic targets of these diseases. MicroRNAs (miRNAs) have emerged as key regulators of metabolic homoeostasis due to their multitargets and network regulatory properties within the past few decades. In this review, we discussed the latest progress in the roles of miRNA-mediated regulatory networks in the development and progression of MASLD, ALD, diabetes and obesity.


Asunto(s)
Enfermedades Metabólicas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Animales , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/terapia , Enfermedades Metabólicas/genética , Obesidad/metabolismo , Obesidad/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/terapia , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/terapia , Hígado Graso/etiología
3.
ACS Sens ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240233

RESUMEN

This paper proposes a novel multicomponent gas-sensing optical fiber probe system. It utilizes a precisely engineered Platinum-coated capillary fabricated via Atomic Layer Deposition (ALD) technology as the core for enhanced Raman spectroscopy, marking the first application of ALD in creating such a structure for gas Raman sensing. The noble metal capillary gas Raman probe demonstrates a low detection limit of 55 ppm for CO2 with a 30 s exposure time and good repeatability in multicomponent gas sensing. The capillary exhibits excellent stability, environmental resistance, and a large core diameter, enabling a rapid gas exchange rate and making it suitable for practical applications.

4.
Free Radic Biol Med ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265793

RESUMEN

Alcohol-associated liver disease(ALD), caused by excessive alcohol consumption, are often associated with inflammatory outbreaks and lipid deposition in the liver. The role of Insulin-like growth factor-binding protein 7 (IGFBP7), an important metabolic regulator, in ALD, its underlying regulatory mechanism, and its potential implication in anti-ALD therapies remain unknown. We investigated the effects of IGFBP7 on hepatic inflammation and lipid metabolism disruption in a mouse model of ALD. Mice were fed by chronic ethanol feeding plus a single binge of ethanol feeding(chronic-plus-single-binge model). In addition, ethanol exposure modeling studies were performed on cultured hepatocytes to verify molecular correlations. The results showed that IGFBP7 expression was significantly elevated in the livers of mice and hepatocytes after chronic ethanol exposure. Subsequently, the results of a study by specific knockout of IGFBP7(IGFBP7-cKO) in mouse hepatocytes and lentiviral silencing of IGFBP7 in vivo suggested that IGFBP7 deletion could improve liver function levels in alcohol-fed mice; It also attenuated the outbreak of hepatitis factor and the disorder of lipid metabolism in mice.Using RNA-seq sequencing of mouse liver tissue, we found that IGFBP7 affects several downstream metabolic signaling pathways, including PPAR, MAPK, FoxO, etc. Then, we used the PPARα plasmid in hepatocytes and discovered that overexpressing PPARα reversed the impact of IGFBP7 on lipid metabolism disorders in hepatocytes. In conclusion, IGFBP7 deficiency in alcohol-associated liver disease alleviates the decline in liver function and the imbalance of lipid metabolism in mice, attenuates the inflammatory outbreak, and affects a variety of downstream lipid metabolism factors by regulating PPARα. Hence, IGFBP7 may be an effective therapeutic target in the treatment of ALD.

5.
Diagnostics (Basel) ; 14(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39272674

RESUMEN

Malnutrition frequently affects patients with alcoholic liver disease (ALD), with important impacts on disease prognosis. Sarcopenia, the clinical phenotype of malnutrition characterized by skeletal muscle loss, is the major component responsible for adverse events in this population. The aim of this study is to assess the use of ultrasound (US) skeletal muscle performance in stratifying ALD disease severity. We recruited 43 patients with ALD and divided them into two groups: alcoholic hepatitis (AH) and alcoholic cirrhosis (AC). We evaluated disease-specific clinical and biological parameters and their relation to US Rectus Femoris muscle (RFM) measurements, including RFM thickness, stiffness (RFMS) and echogenicity (RFE). A thirty-seconds chairs stand test (30sCST) was used as the sarcopenia surrogate test. RMF thickness correlated with platelet count and serum albumin (p < 0.001). Both RFM and RFMS correlated with disease severity (p < 0.001) and 30sCST (p < 0.001, p = 0.002). Patients with AH had more severe US muscle abnormalities compared to AC (RFMS 1.78 m/s vs. 1.35 m/s, p = 0.001) and the highest prevalence of RFE (χ2 = 8.652, p = 0.003). Rectus Femoris US assessment could represent a reliable tool in the diagnosis and severity stratification of ALD-induced sarcopenia.

6.
J Biomed Mater Res A ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237474

RESUMEN

Biomimicking the chemical, mechanical, and topographical properties of bone on an implant model is crucial to obtain rapid and effective osteointegration, especially for the large-area fractures of the skeletal system. Titanium-based biomaterials are more frequently preferred in clinical use in such cases and coating these materials with oxide layers having chemical/nanotopographic properties to enhance osteointegration and implantation success rates has been studied for a long time. The objective of this study is to examine the high and rapid mineralization potential of anodized aluminum oxide (AAO) coated and atomic layer deposition (ALD)-alumina coated titanium substrates on large deformation areas with difficult spontaneous healing. AAO-coated titanium (AAO@Ti) substrates were fabricated via anodization technique in different electrolytes and their osteogenic potential was analyzed by comparing them to the bare titanium surface as a control. In order to investigate the effect of the ionic characters gained by the surfaces through anodization, the oxidized nanotopographic substrates were additionally coated with an ultrathin alumina layer via ALD (ALD@AAO@Ti), which is a sensitive and conformal coating vapor deposition technique. Besides, a bare titanium sample was also coated with pure alumina by ALD (ALD@Ti) to investigate the effect of nanoscale surface morphology. XPS analysis after ALD coating showed that the ionic character of each surface fabricated by anodization was successfully suppressed. In vitro studies demonstrated that, among the substrates investigated, the mineralization capacity of MG-63 osteosarcoma cells were highest when incubated on ALD-treated and bare AAO@Ti samples that were anodized in phosphoric acid (H3PO4_AAO@Ti and ALD@H3PO4_AAO@Ti). Mineralization on these substrates also increased consistently beginning from day 2 to day 21. Moreover, immunocytochemistry for osteopontin (OPN) demonstrated the highest expression for ALD@H3PO4_AAO@Ti, followed by the H3PO4_AAO@Ti sample. Consequently, it was observed that, although ALD treatment improves cellular characteristics on all samples, effective mineralization requires more than a simple ALD coating or the presence of a nanostructured topography. Overall, ALD@H3PO4_AAO@Ti substrates can be considered as an implant alternative with its enhanced osteogenic differentiation potential and rapid mineralization capacity.

7.
Hepatol Res ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110552

RESUMEN

AIMS: The new nomenclature of steatotic liver disease (SLD) including metabolic dysfunction-associated SLD (MASLD), MASLD and increased alcohol intake (MetALD), and alcohol-associated liver disease (ALD) has recently been proposed. We aimed to elucidate the relationship between each category of SLD and chronic kidney disease (CKD). METHODS: We investigated the effects of various SLDs on the development of CKD, defined as estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 or positive for urinary protein, during a 10-year period in 12 138 Japanese subjects (men / women, 7984/4154; mean age, 48 years) who received annual health examinations including abdominal ultrasonography. RESULTS: The prevalences of SLD without metabolic dysfunction (SLD-MD[-]), MASLD, MetALD, and ALD were 1.7%, 26.3%, 4.9%, and 1.9%, respectively. During the follow-up period, 1963 subjects (16.2%) (men / women, 1374 [17.2%]/589 [14.2%]) had new onset of CKD. Multivariable Cox proportional hazard model analyses after adjustment of age, sex, eGFR, current smoking habit, diabetes mellitus, hypertension, and dyslipidemia showed that the hazard ratios (HR [95% confidence interval]) for the development of CKD in subjects with MASLD (1.20 [1.08-1.33], p = 0.001) and those with ALD (1.41 [1.05-1.88], p = 0.022), but not those with MetALD (1.11 [0.90-1.36], p = 0.332), were significantly higher than the HR in subjects with non-SLD. Interestingly, subjects with SLD-MD[-] had a significantly lower HR (0.61 [0.39-0.96], p = 0.034) than that in subjects with non-SLD. The addition of the novel classification of SLDs into traditional risk factors for the development of CKD significantly improved the discriminatory capacity. CONCLUSIONS: MASLD and ALD, but not SLD-MD[-], are independently associated with the development of CKD.

8.
Nanomaterials (Basel) ; 14(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39195392

RESUMEN

Colloidal quantum dots (CQDs) are valuable for their potential applications in optoelectronic devices. However, they are susceptible to thermal degradation during processing and while in use. Mitigating thermally induced sintering, which leads to absorption spectrum broadening and undesirable changes to thin film electrical properties, is necessary for the reliable design and manufacture of CQD-based optoelectronics. Here, low-temperature metal-oxide atomic layer deposition (ALD) was investigated as a method for mitigating sintering while preserving the optoelectronic properties of mercury telluride (HgTe) CQD films. ALD-coated films are subjected to temperatures up to 160 °C for up to 5 h and alumina (Al2O3) is found to be most effective at preserving the optical properties, demonstrating the feasibility of metal-oxide in-filling to protect against sintering. HgTe CQD film electrical properties were investigated before and after alumina ALD in-filling, which was found to increase the p-type doping and hole mobility of the films. The magnitude of these effects depended on the conditions used to prepare the HgTe CQDs. With further investigation into the interaction effects of CQD and ALD process factors, these results may be used to guide the design of CQD-ALD materials for their practical integration into useful optoelectronic devices.

9.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125684

RESUMEN

In addition to direct damage to hepatocytes, long-term ethanol consumption leads to lipid accumulation and hepatic steatosis, as well as to the dysregulation of lipid metabolism. The final step in various liver diseases is cirrhosis. The aim of this study was to compare the FA (fatty acids) profile and expression levels of genes involved in lipid metabolism in cirrhotic liver tissue and normal liver tissue. Exploring the changes in the FA profile and expression of genes related to fatty acid metabolism in cirrhotic liver tissue reveals a molecular landscape that goes beyond the surface of traditional liver function assessments. Understanding the shifts in gene expression and fatty acid composition in liver tissue opens avenues for interventions that may aid in the treatment of cirrhosis in the future.


Asunto(s)
Ácidos Grasos , Metabolismo de los Lípidos , Cirrosis Hepática , Hígado , Ácidos Grasos/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/genética , Humanos , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Regulación de la Expresión Génica , Perfilación de la Expresión Génica , Anciano
10.
Int Immunopharmacol ; 141: 112938, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39163683

RESUMEN

Alcoholic liver disease (ALD) is a broad category of disorders that begin with liver injury, lead to liver fibrosis, and ultimately conclude in alcohol-induced liver cirrhosis, the most chronic and irreversible liver damage. Liver fibrosis (LF) is a common pathological characteristic observed in most chronic liver inflammatory conditions that involve prolonged inflammation. In this review, we have summarized ethanol-mediated hepatic stellate cell (HSCs) activation and its role in liver fibrosis progression. We highlight important molecular mechanisms that are modulated by ethanol, play a role in the activation of HSCs and the progression of liver fibrosis and identifying potential targets to ameliorate liver fibrosis.


Asunto(s)
Etanol , Células Estrelladas Hepáticas , Hepatopatías Alcohólicas , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Humanos , Animales , Hepatopatías Alcohólicas/patología , Hepatopatías Alcohólicas/inmunología , Hepatopatías Alcohólicas/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/inmunología , Hígado/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/inmunología , Progresión de la Enfermedad
11.
ACS Nano ; 18(33): 22071-22079, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39102305

RESUMEN

This study describes a modified atomic layer deposition (ALD) process for fabricating BiOxSey thin films, targeting their application as high-k dielectrics in semiconductor devices, especially for two-dimensional semiconductors. Using an intermediate-enhanced ALD technique for Bi2Se3 and a plasma-enhanced ALD process for Bi2O3, a method for the sequential deposition of Bi2SeO5 ternary films has been established. The thin film has been deposited on SiO2 and TiN substrates, exhibiting growth rates of 0.17 to 0.16 nm·cycle-1 without an incubation period, thanks to facile nucleation characteristics. The resulting film exhibited high flatness and reached 96% of its theoretical density, forming a uniform nanocrystalline structure. Electrical evaluations using metal-insulator-metal capacitors indicated the dielectric constant (∼17.6) and electrical breakdown strength (2.6 MV·cm-1), demonstrating their potential as a dielectric layer.

12.
Nanotechnology ; 35(43)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39084235

RESUMEN

Indium oxide (In2O3) is a promising channel material for thin-film transistors (TFTs). In this work, we develop an atomic layer deposition (ALD) process of using trimethylindium and ozone (O3) to deposit In2O3films and fabricate ultrathin In2O3TFTs. The In2O3TFTs with 4 nm channel thickness show generally good switching characteristics with a highIon/Ioffof 108, a high mobility (µFE) of 16.2cm2V-1s-1and a positive threshold voltage (Vth) of 0.48 V. Although the 4 nm In2O3TFTs exhibit short channel effect, it can be improved by adding an ALD Ga2O3capping layer to afford the bilayer In2O3/Ga2O3channel structure. The afforded In2O3/Ga2O3TFTs exhibit improved immunity to the short channel effect, with good TFT characteristics ofIon/Ioffof 107,µFEof 9.3cm2V-1s-1, and positiveVthof 2.23 V. Overall, the thermal budget of the entire process is only 400 °C, which is suitable for the display and CMOS back-end-of-line-compatible applications.

13.
Genes (Basel) ; 15(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39062617

RESUMEN

The state of California (CA) added X-linked adrenoleukodystrophy (X-ALD) to newborn screening (NBS) in 2016 via the measurement of C26:0-lysophosphatidylcholine (C26:0-LPC) in a two-tier fashion, followed by sequencing of the ABCD1 gene. This has resulted in the identification of individuals with genetic conditions beyond X-ALD that can also result in elevated C26:0-LPC by NBS. We describe the biochemical, molecular, and clinical characteristics of nine patients from two metabolic centers in California who screened positive by NBS for elevated C26:0-LPC between 2016 and 2022 and were ultimately diagnosed with a genetic condition other than X-ALD. Seven individuals were diagnosed with Zellweger spectrum disorder (ZSD) due to biallelic variants in PEX genes. One male was diagnosed with Klinefelter syndrome and one female was found to have an X chromosome contiguous gene deletion syndrome after the identification of a heterozygous VUS and hemizygous VUS variant in ABCD1, respectively. Patients with ZSD had significantly higher first- and second-tier C26:0-LPC levels compared to the two non-ZSD cases. Identification of children with ZSD and atypical patterns of ABCD1 variants is a secondary benefit of NBS for X-ALD, leading to earlier diagnosis, prompt therapeutic initiation, and more accurate genetic counseling. As screening for X-ALD continues via the measurement of C26:0-LPC, our knowledge of additional genetic conditions associated with elevated C26:0-LPC will continue to advance, allowing for increased recognition of other genetic disorders for which early intervention is warranted.


Asunto(s)
Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP , Adrenoleucodistrofia , Tamizaje Neonatal , Humanos , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/diagnóstico , Masculino , Femenino , Recién Nacido , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/genética , Síndrome de Zellweger/genética , Síndrome de Zellweger/diagnóstico , California , Pruebas Genéticas/métodos
14.
Biomed Pharmacother ; 178: 117175, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39074426

RESUMEN

Alcoholic liver disease (ALD) significantly affects immune cell function and leads to immunological dysregulation. This study explored the potential of granulocyte colony-stimulating factor (G-CSF) to mitigate the negative effects of alcohol on immune cells in a mouse model of ALD. To investigate the capacity of G-CSF, ALD was induced using a 17-day alcohol-enriched diet, followed by a single G-CSF dose prior to sampling. We focused on the dynamics of peripheral blood mononuclear cells using high-dimensional mass cytometry to detect subtle changes. Alcohol intake reduced the number of B cells, monocytes, dendritic cells, and NK cells while increasing the number of T cells. Notably, G-CSF treatment reversed the alcohol-induced increase in total CD4+ and CD8+ T cell populations. This effect was remarkable in naïve, effector CD4+ T cells and naïve CD8+ T cells. PhenoGraph and FlowSOM analysis further revealed the recovery effect of G-CSF on specific T cell subgroups, including central memory CD8+ T cells and double-negative T cells expressing Ly6chighCD44high, which are adversely affected by alcohol. These results enhance our understanding of the effect of ALD on immune function and suggest that G-CSF is a potential therapeutic agent, laying the foundation for future clinical research.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Hepatopatías Alcohólicas , Animales , Masculino , Ratones , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Etanol/farmacología , Factor Estimulante de Colonias de Granulocitos/farmacología , Hepatopatías Alcohólicas/inmunología , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/patología , Ratones Endogámicos C57BL , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología
15.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062840

RESUMEN

Neutrophils release neutrophil extracellular traps (NETs) as a defense strategy in response to broad-spectrum infections and sterile triggers. NETs consist of a DNA scaffold decorated with antimicrobial peptides (AMPs) and enzymatically active proteases, including peptidyl arginine deiminase type 4 (PAD4). Susceptibility to infections and inflammatory dysregulation are hallmarks of alcohol-related liver disease (ALD). Sixty-two patients with ALD were prospectively recruited, and they were followed for 90 days. Twenty-four healthy volunteers served as the control group. PAD4 concentrations were quantified using immunoenzymatic ELISAs. Correlation coefficients between PAD4 blood concentrations and markers of systemic inflammation; liver dysfunction severity scores; and ALD complications were calculated. The receiver operating curves (ROCs) and their areas under the curve (AUCs) were checked in order to assess the accuracy of PAD4 expression in predicting the degree of liver failure and the development of ALD complications. Systemic concentrations of PAD4 were significantly increased in the patients with ALD in comparison with controls. PAD4 levels correlated with the standard markers of inflammation and revealed a good predictive AUC (0.76) for survival in the whole ALD group. PAD4 seems to be an inflammatory mediator and may be potentially applied as a predictor of patient survival in ALD.


Asunto(s)
Biomarcadores , Hepatopatías Alcohólicas , Neutrófilos , Arginina Deiminasa Proteína-Tipo 4 , Humanos , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Masculino , Femenino , Neutrófilos/metabolismo , Persona de Mediana Edad , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Adulto , Biomarcadores/sangre , Trampas Extracelulares/metabolismo , Anciano , Curva ROC , Estudios de Casos y Controles
16.
ACS Nano ; 18(29): 19086-19098, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38975932

RESUMEN

A deep understanding of the interface states in metal-oxide-semiconductor (MOS) structures is the premise of improving the gate stack quality, which sets the foundation for building field-effect transistors (FETs) with high performance and high reliability. Although MOSFETs built on aligned semiconducting carbon nanotube (A-CNT) arrays have been considered ideal energy-efficient successors to commercial silicon (Si) transistors, research on the interface states of A-CNT MOS devices, let alone their optimization, is lacking. Here, we fabricate MOS capacitors based on an A-CNT array with a well-designed layout and accurately measure the capacitance-voltage and conductance-voltage (C-V and G-V) data. Then, the gate electrostatics and the physical origins of interface states are systematically analyzed and revealed. In particular, targeted improvement of gate dielectric growth in the A-CNT MOS device contributes to suppressing the interface state density (Dit) to 6.1 × 1011 cm-2 eV-1, which is a record for CNT- or low-dimensional semiconductors-based MOSFETs, boosting a record transconductance (gm) of 2.42 mS/µm and an on-off ratio of 105. Further decreasing Dit below 1 × 1011 cm-2 eV-1 is necessary for A-CNT MOSFETs to achieve the expected high energy efficiency.

17.
J Biotechnol Biomed ; 7(2): 277-288, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39056013

RESUMEN

X-ALD, an inherited monogenic metabolic disorder affecting the CNS and adrenal white matter, is caused by mutations in ABCD1 gene leading to defective fatty acid oxidation in the peroxisomes. This results in accumulation of very long-chain fatty acids, VLCFA, into brain, spinal cord, and body fluids. A single ABCD1mutation does not clearly explain the severity and diverse clinical spectrum of X-ALD phenotypes which suggests that not only genetic but also other modifier genes, epigenetic factors, and environmental factors play a role and contribute to neuroinflammation, mitochondrial dysfunctions, oxidative stress, and metabolic defects seen in phenotypes of ALD. In this review we discuss genotype and phenotype correlation and clinical spectra of X-ALD, previous and recent modifier genetic factors of X-ALD, including novel role of microRNAs (miRNAs) in pathology and as biomarkers. We also discuss the mechanistic interplay of miRNAs and metabolic pathways and potential of targeting miRNAs for X-ALD.

18.
Mar Drugs ; 22(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39057397

RESUMEN

The prevention and treatment of liver disease, a class of disease that seriously threatens human health, has always been a hot topic of medical research. In recent years, with the in-depth exploration of marine resources, marine natural products have shown great potential and value in the field of liver disease treatment. Compounds extracted and isolated from marine natural products have a variety of biological activities such as significant antiviral properties, showing potential in the management of alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), protection of the liver from fibrosis, protection from liver injury and inhibition of the growth of hepatocellular carcinoma (HCC). This paper summarizes the progress of research on marine natural products for the treatment of liver diseases in the past decade, including the structural types of active substances from different natural products and the mechanisms underlying the modulation of different liver diseases and reviews their future prospects.


Asunto(s)
Organismos Acuáticos , Productos Biológicos , Hepatopatías , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Productos Biológicos/química , Humanos , Animales , Hepatopatías/tratamiento farmacológico , Antivirales/farmacología , Antivirales/química
19.
Nanomaterials (Basel) ; 14(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39057888

RESUMEN

Area selective deposition (ASD) is a promising IC fabrication technique to address misalignment issues arising in a top-down litho-etch patterning approach. ASD can enable resist tone inversion and bottom-up metallization, such as via prefill. It is achieved by promoting selective growth in the growth area (GA) while passivating the non-growth area (NGA). Nevertheless, preventing undesired particles and defect growth on the NGA is still a hurdle. This work shows the selectivity of Ru films by passivating the Si oxide NGA with self-assembled monolayers (SAMs) and small molecule inhibitors (SMIs). Ru films are deposited on the TiN GA using a metal-organic precursor tricarbonyl (trimethylenemethane) ruthenium (Ru TMM(CO)3) and O2 as a co-reactant by atomic layer deposition (ALD). This produces smooth Ru films (<0.1 nm RMS roughness) with a growth per cycle (GPC) of 1.6 Å/cycle. Minimizing the oxygen co-reactant dose is necessary to improve the ASD process selectivity due to the limited stability of the organic molecule and high reactivity of the ALD precursor, still allowing a Ru GPC of 0.95 Å/cycle. This work sheds light on Ru defect generation mechanisms on passivated areas from the detailed analysis of particle growth, coverage, and density as a function of ALD cycles. Finally, an optimized ASD of Ru is demonstrated on TiN/SiO2 3D patterned structures using dimethyl amino trimethyl silane (DMA-TMS) as SMI.

20.
Acta Pharmacol Sin ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992121

RESUMEN

Macrophage polarization is vital to mounting a host defense or repairing tissue in various liver diseases. Excessive activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is related to the orchestration of inflammation and alcohol-associated liver disease (ALD) pathology. Rab GTPases play critical roles in regulating vesicular transport. In this study we investigated the role of Rab11b in ALD, aiming to identify effective therapeutic targets. Here, we first demonstrated a decreased expression of Rab11b in macrophages from ALD mice. Knockdown of Rab11b by macrophage-specific adeno-associated virus can alleviate alcohol induced liver inflammation, injury and steatosis. We found that LPS and alcohol stimulation promoted Rab11b transferring from the nucleus to the cytoplasm in bone marrow-derived macrophages (BMDM) cells. Rab11b specifically activated the NLRP3 inflammasome in BMDMs and RAW264.7 cells to induce M1 macrophage polarization. Rab11b overexpression in BMDMs inhibited autophagic flux, leading to the suppression of LC3B-mediated NLRP3 degradation. We conclude that impaired Rab11b could alleviate alcohol-induced liver injury via autophagy-mediated NLRP3 degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA