Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(7)2023 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-37515291

RESUMEN

In the present study, 31 samples (12 fecal, 9 nasal and 10 rectal swabs) from 28/92 (30.43%, 10 captive and 18 free-roaming African green monkeys (AGMs, Chlorocebus sabaeus)) apparently healthy AGMs in the Caribbean Island of St. Kitts tested positive for adenoviruses (AdVs) by DNA-dependent DNA polymerase (pol)-, or hexon-based screening PCR assays. Based on analysis of partial deduced amino acid sequences of Pol- and hexon- of nine AGM AdVs, at least two AdV genetic variants (group-I: seven AdVs with a Simian mastadenovirus-F (SAdV-F)/SAdV-18-like Pol and hexon, and group-II: two AdVs with a SAdV-F/SAdV-18-like Pol and a Human mastadenovirus-F (HAdV-F)/HAdV-40-like hexon) were identified, which was corroborated by analysis of the nearly complete putative Pol, complete hexon, and partial penton base sequences of a representative group-I (strain KNA-08975), and -II (KNA-S6) AdV. SAdV-F-like AdVs were reported for the first time in free-roaming non-human primates (NHPs) and after ~six decades from captive NHPs. Molecular characterization of KNA-S6 (and the other group-II AdV) indicated possible recombination and cross-species transmission events involving SAdV-F-like and HAdV-F-like viruses, corroborating the hypothesis that the evolutionary pathways of HAdVs and SAdVs are intermingled, complicated by recombination and inter-species transmission events, especially between related AdV species, such as HAdV-F and SAdV-F. To our knowledge, this is the first report on detection and molecular characterization of AdVs in AGMs.


Asunto(s)
Infecciones por Adenoviridae , Adenoviridae , Chlorocebus aethiops , Enfermedades de los Monos , Adenoviridae/clasificación , Adenoviridae/genética , Adenoviridae/aislamiento & purificación , Animales , Animales Salvajes , San Kitts y Nevis , Filogenia , Infecciones por Adenoviridae/transmisión , Infecciones por Adenoviridae/veterinaria , Infecciones por Adenoviridae/virología , Enfermedades de los Monos/transmisión , Enfermedades de los Monos/virología , Animales de Zoológico
2.
Biochim Biophys Acta ; 1828(11): 2646-53, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23899501

RESUMEN

Large procyanidins (more than three subunits) are not absorbed at the gastrointestinal tract but could exert local effects through their interactions with membranes. We previously showed that hexameric procyanidins (Hex), although not entering cells, interact with membranes modulating cell signaling and fate. This paper investigated if Hex, as an example of large procyanidins, can selectively interact with lipid rafts which could in part explain its biological actions. This mechanism was studied in both synthetic membranes (liposomes) and Caco-2 cells. Hex promoted Caco-2 cell membrane rigidification and dehydration, effects that were abolished upon cholesterol depletion with methyl-ß-cyclodextrin (MCD). Hex prevented lipid raft structure disruption induced by cholesterol depletion/redistribution by MCD or sodium deoxycholate. Supporting the involvement of cholesterol-Hex bonding in Hex interaction with lipid rafts, the absence of cholesterol markedly decreased the capacity of Hex to prevent deoxycholate- and Triton X-100-mediated disruption of lipid raft-like liposomes. Stressing the functional relevance of this interaction, Hex mitigated lipid raft-associated activation of the extracellular signal-regulated kinases (ERK) 1/2. Results support the capacity of a large procyanidin (Hex) to interact with membrane lipid rafts mainly through Hex-cholesterol bondings. Procyanidin-lipid raft interactions can in part explain the capacity of large procyanidins to modulate cell physiology.


Asunto(s)
Colesterol/metabolismo , Microdominios de Membrana/metabolismo , Proantocianidinas/metabolismo , Western Blotting , Células CACO-2 , Detergentes , Activación Enzimática , Humanos , Liposomas , Sistema de Señalización de MAP Quinasas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA