Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros











Intervalo de año de publicación
1.
Protein Expr Purif ; 224: 106580, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39154924

RESUMEN

Poly-ADP-ribose polymerase-14 (PARP14) can modify proteins and nucleic acids by the reversible addition of a single ADP-ribose molecule. Aberrant PARP14 functions have been related to cancer and inflammation, and its domains are involved in processes related to viral infection. Previous research indicates that PARP14 functions might be mediated via a multitude of target proteins. In vitro studies of this large multidomain enzyme have been complicated by difficulties to obtain biochemical quantities of pure protein. Here we present a strategy that allows bacterial expression and purification of a functional multidomain construct of PARP14. We substituted an internal KH domain and its neighboring unstructured region with a SUMO domain to obtain a protein construct that encompasses three macrodomains, a WWE domain, and a PARP catalytic domain. We show that the resulting construct retains both ADP-ribosyltransferase and de-MARylase activities. This construct will be useful in structural and functional studies of PARP14.


Asunto(s)
Escherichia coli , Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Dominios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Expresión Génica , Clonación Molecular
2.
Biol Chem ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39066732

RESUMEN

The posttranslational modification of proteins with poly(ADP-ribose) was discovered in the sixties. Since then, we have learned that the enzymes involved, the so-called poly(ADP-ribosyl)polymerases (PARPs), are transferases which use cofactor NAD+ to transfer ADP-ribose to their targets. Few PARPs are able to create poly(ADP-ribose), whereas the majority transfers a single ADP-ribose. In the last decade, hydrolases were discovered which reverse mono(ADP-ribosyl)ation, detection methods were developed and new substrates were defined, including nucleic acids. Despite the continued effort, relatively little is still known about the biological function of most PARPs. In this review, we summarise key functions of ADP-ribosylation and introduce emerging insights.

3.
Toxins (Basel) ; 16(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39057953

RESUMEN

ADP-ribosylation is a ubiquitous modification of proteins and other targets, such as nucleic acids, that regulates various cellular functions in all kingdoms of life. Furthermore, these ADP-ribosyltransferases (ARTs) modify a variety of substrates and atoms. It has been almost 60 years since ADP-ribosylation was discovered. Various ART structures have been revealed with cofactors (NAD+ or NAD+ analog). However, we still do not know the molecular mechanisms of ART. It needs to be better understood how ART specifies the target amino acids or bases. For this purpose, more information is needed about the tripartite complex structures of ART, the cofactors, and the substrates. The tripartite complex is essential to understand the mechanism of ADP-ribosyltransferase. This review updates the general ADP-ribosylation mechanism based on ART tripartite complex structures.


Asunto(s)
ADP Ribosa Transferasas , ADP-Ribosilación , ADP Ribosa Transferasas/metabolismo , ADP Ribosa Transferasas/química , Humanos , Animales , Especificidad por Sustrato , NAD/metabolismo
4.
Cell Host Microbe ; 32(7): 1059-1073.e8, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38821063

RESUMEN

Toxin-antitoxins (TAs) are prokaryotic two-gene systems composed of a toxin neutralized by an antitoxin. Toxin-antitoxin-chaperone (TAC) systems additionally include a SecB-like chaperone that stabilizes the antitoxin by recognizing its chaperone addiction (ChAD) element. TACs mediate antiphage defense, but the mechanisms of viral sensing and restriction are unexplored. We identify two Escherichia coli antiphage TAC systems containing host inhibition of growth (HigBA) and CmdTA TA modules, HigBAC and CmdTAC. HigBAC is triggered through recognition of the gpV major tail protein of phage λ. Chaperone HigC recognizes gpV and ChAD via analogous aromatic molecular patterns, with gpV outcompeting ChAD to trigger toxicity. For CmdTAC, the CmdT ADP-ribosyltransferase toxin modifies mRNA to halt protein synthesis and limit phage propagation. Finally, we establish the modularity of TACs by creating a hybrid broad-spectrum antiphage system combining the CmdTA TA warhead with a HigC chaperone phage sensor. Collectively, these findings reveal the potential of TAC systems in broad-spectrum antiphage defense.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Chaperonas Moleculares , Sistemas Toxina-Antitoxina , Sistemas Toxina-Antitoxina/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Escherichia coli/virología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Bacteriófago lambda/genética , Bacteriófago lambda/fisiología , Bacteriófago lambda/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bacteriófagos/fisiología , Antitoxinas/metabolismo , Antitoxinas/genética , Proteínas de la Cola de los Virus/metabolismo , Proteínas de la Cola de los Virus/genética
5.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1671-1686, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37707681

RESUMEN

Clostridium botulinum C3 exoenzyme (C3bot) exclusively inhibits RhoA, B and C by ADP-ribosylation and is therefore used as a cell-permeable tool for investigating the cellular role of these Rho-GTPases. Rho-GTPases represent a molecular switch integrating different receptor signalling to downstream cascades including transcriptional cascades that regulate various cellular processes, such as regulation of actin cytoskeleton and cell proliferation. C3bot-induced inhibition of RhoA leads to reorganization of the actin cytoskeleton, morphological changes, and inhibition of cell proliferation as well as modulation of inflammatory response. In this study, we characterized the C3bot-mediated effects on a full-thickness skin model exhibiting a psoriasis-like phenotype through the addition of cytokines. Indeed, after the addition of cytokines, a decrease in epidermal thickness, parakeratosis, and induction of IL-6 was detected. In the next step, it was studied whether C3bot caused a reduction in the cytokine-induced psoriasis-like phenotypes. Basal addition of C3bot after cytokine induction of the full-thickness skin models caused less epidermal thinning and reduced IL-6 abundance. Simultaneous basal incubation with cytokines and C3bot, IL-6 abundance was inhibited, but epidermal thickness was only moderately affected. When C3bot was added apically to the skin model, IL-6 abundance was reduced, but no further effects on the psoriasis-like phenotype of the epidermis were observed. In summary, C3bot inhibits the cytokine-induced expression of IL-6 and thus may have an impact on the pro-inflammatory immune response in the psoriasis-like phenotype.


Asunto(s)
Toxinas Botulínicas , Clostridium botulinum , Psoriasis , Humanos , Clostridium botulinum/genética , Clostridium botulinum/metabolismo , Toxinas Botulínicas/farmacología , Interleucina-6/metabolismo , ADP Ribosa Transferasas , Fenotipo , Proteínas de Unión al GTP rho/metabolismo , Psoriasis/tratamiento farmacológico
6.
Trends Biochem Sci ; 49(2): 97-98, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37980188

RESUMEN

Bacteriophages have been a treasure trove for the discovery of fundamental biological principles and the expansion of our enzymatic toolkit since the dawn of molecular biology. In a recent study by Wolfram-Schauerte et al. these ubiquitous bacteria-infecting viruses reveal yet another new biological concept: post-translational modification through covalent RNA-protein linkages.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , ARN , Procesamiento Proteico-Postraduccional
7.
Front Biosci (Landmark Ed) ; 28(11): 295, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-38062812

RESUMEN

BACKGROUND: Patients with type 2 diabetes mellitus have a higher susceptibility for colorectal cancer and poorer prognosis, but the mechanism is still unknown. Here, we investigated the effect of ADP-ribosyltransferase 1 (ART1) on the growth of colorectal cancer in an animal model of diabetes with high norepinephrine status, as well as the potential mechanism. METHODS: We evaluated the size and weight of transplanted CT26 cell tumors with different ART1 expression levels in a mouse model of diabetes, as well as the survival time. CCK8 and flow cytometry were used to evaluate the growth of CT26 cells in vitro. Western blot was performed to analyze differentially expressed proteins in the ART1-modulated pathway. RESULTS: High levels of norepinephrine and ART1 favored the proliferation of CT26 cells in vitro and in vivo. Moreover, inhibition of norepinephrine-dependent proliferation was observed in ART1-silenced CT26 cells compared to those with normal ART1 expression. Following reduction of the serum norepinephrine level by surgery, the size and weight of transplanted CT26 cell tumors was significantly reduced compared to non-operated and sham-operated mice. Furthermore, the expression of ART1, mTOR, STAT3, and p-AKT protein in the tumor tissue of diabetic mice was higher than in non-diabetic mice. Following reduction of the norepinephrine level by renal denervation (RD), expression of the proliferation-related proteins mTOR, STAT3, p-AKT protein decreased, but no change was seen for ART1 expression. At the same concentration of norepinephrine, ART1 induced the expression of p-AKT, mTOR, STAT3, CyclinD1 and c-myc in CT26 cells in vitro. CONCLUSIONS: We conclude that faster growth of colorectal cancer in high norepinephrine conditions requires the expression of ART1, and that high ART1 expression may be a novel target for the treatment of diabetes-associated colorectal cancer.


Asunto(s)
ADP Ribosa Transferasas , Neoplasias Colorrectales , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Norepinefrina , Animales , Ratones , ADP Ribosa Transferasas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Norepinefrina/farmacología , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR
8.
J Biol Chem ; 299(12): 105397, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898399

RESUMEN

ADP-ribose is a versatile modification that plays a critical role in diverse cellular processes. The addition of this modification is catalyzed by ADP-ribosyltransferases, among which notable poly(ADP-ribose) polymerase (PARP) enzymes are intimately involved in the maintenance of genome integrity. The role of ADP-ribose modifications during DNA damage repair is of significant interest for the proper development of PARP inhibitors targeted toward the treatment of diseases caused by genomic instability. More specifically, inhibitors promoting PARP persistence on DNA lesions, termed PARP "trapping," is considered a desirable characteristic. In this review, we discuss key classes of proteins involved in ADP-ribose signaling (writers, readers, and erasers) with a focus on those involved in the maintenance of genome integrity. An overview of factors that modulate PARP1 and PARP2 persistence at sites of DNA lesions is also discussed. Finally, we clarify aspects of the PARP trapping model in light of recent studies that characterize the kinetics of PARP1 and PARP2 recruitment at sites of lesions. These findings suggest that PARP trapping could be considered as the continuous recruitment of PARP molecules to sites of lesions, rather than the physical stalling of molecules. Recent studies and novel research tools have elevated the level of understanding of ADP-ribosylation, marking a coming-of-age for this interesting modification.


Asunto(s)
Inestabilidad Genómica , Poli(ADP-Ribosa) Polimerasa-1 , Humanos , Adenosina Difosfato Ribosa , Daño del ADN , Reparación del ADN , Poli(ADP-Ribosa) Polimerasa-1/química , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Animales
9.
Cell Rep Med ; 4(9): 101191, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37683650

RESUMEN

Previous chemotherapy research has focused almost exclusively on apoptosis. Here, a standard frontline drug combination of cytarabine and idarubicin induces distinct features of caspase-independent, poly(ADP-ribose) polymerase 1 (PARP-1)-mediated programmed cell death "parthanatos" in acute myeloid leukemia (AML) cell lines (n = 3/10 tested), peripheral blood mononuclear cells from healthy human donors (n = 10/10 tested), and primary cell samples from patients with AML (n = 18/39 tested, French-American-British subtypes M4 and M5). A 3-fold improvement in survival rates is observed in the parthanatos-positive versus -negative patient groups (hazard ratio [HR] = 0.28-0.37, p = 0.002-0.046). Manipulation of PARP-1 activity in parthanatos-competent cells reveals higher drug sensitivity in cells that have basal PARP-1 levels as compared with those subjected to PARP-1 overexpression or suppression. The same trends are observed in RNA expression databases and support the conclusion that PARP-1 can have optimal levels for favorable chemotherapeutic responses.


Asunto(s)
Leucemia , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Apoptosis , Línea Celular , Leucocitos Mononucleares , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
10.
J Biol Chem ; 299(9): 105096, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37507011

RESUMEN

PARP14/BAL2 is a large multidomain enzyme involved in signaling pathways with relevance to cancer, inflammation, and infection. Inhibition of its mono-ADP-ribosylating PARP homology domain and its three ADP-ribosyl binding macro domains has been regarded as a potential means of therapeutic intervention. Macrodomains-2 and -3 are known to stably bind to ADP-ribosylated target proteins, but the function of macrodomain-1 has remained somewhat elusive. Here, we used biochemical assays of ADP-ribosylation levels to characterize PARP14 macrodomain-1 and the homologous macrodomain-1 of PARP9. Our results show that both macrodomains display an ADP-ribosyl glycohydrolase activity that is not directed toward specific protein side chains. PARP14 macrodomain-1 is unable to degrade poly(ADP-ribose), the enzymatic product of PARP1. The F926A mutation of PARP14 and the F244A mutation of PARP9 strongly reduced ADP-ribosyl glycohydrolase activity of the respective macrodomains, suggesting mechanistic homology to the Mac1 domain of the SARS-CoV-2 Nsp3 protein. This study adds two new enzymes to the previously known six human ADP-ribosyl glycohydrolases. Our results have key implications for how PARP14 and PARP9 will be studied and how their functions will be understood.

11.
Naunyn Schmiedebergs Arch Pharmacol ; 396(2): 173-190, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36203094

RESUMEN

Selected findings about Clostridioides difficile (formerly Clostridium difficile) toxins are presented in a narrative review. Starting with a personal view on research about G proteins, adenylyl cyclase, and ADP-ribosylating toxins in the laboratory of Günter Schultz in Heidelberg, milestones of C. difficile toxin research are presented with the focus on toxin B (TcdB), covering toxin structure, receptor binding, toxin up-take and refolding, the intracellular actions of TcdB, and the treatment of C. difficile infection.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Clostridioides difficile/metabolismo , Proteínas Bacterianas/metabolismo , Transducción de Señal
12.
Viruses ; 14(9)2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36146784

RESUMEN

NAD+ and ADP-ribose (ADPr)-containing molecules are at the interface of virus-host conflicts across life encompassing RNA processing, restriction, lysogeny/dormancy and functional hijacking. We objectively defined the central components of the NAD+-ADPr networks involved in these conflicts and systematically surveyed 21,191 completely sequenced viral proteomes representative of all publicly available branches of the viral world to reconstruct a comprehensive picture of the viral NAD+-ADPr systems. These systems have been widely and repeatedly exploited by positive-strand RNA and DNA viruses, especially those with larger genomes and more intricate life-history strategies. We present evidence that ADP-ribosyltransferases (ARTs), ADPr-targeting Macro, NADAR and Nudix proteins are frequently packaged into virions, particularly in phages with contractile tails (Myoviruses), and deployed during infection to modify host macromolecules and counter NAD+-derived signals involved in viral restriction. Genes encoding NAD+-ADPr-utilizing domains were repeatedly exchanged between distantly related viruses, hosts and endo-parasites/symbionts, suggesting selection for them across the virus world. Contextual analysis indicates that the bacteriophage versions of ADPr-targeting domains are more likely to counter soluble ADPr derivatives, while the eukaryotic RNA viral versions might prefer macromolecular ADPr adducts. Finally, we also use comparative genomics to predict host systems involved in countering viral ADP ribosylation of host molecules.


Asunto(s)
Adenosina Difosfato Ribosa , Virus , Adenosina Difosfato Ribosa/metabolismo , NAD/metabolismo , Proteoma , ARN , Virus/metabolismo
13.
Bioorg Med Chem ; 68: 116875, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35716588

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) is an important biomolecule with essential roles at the intersection of energy metabolism, epigenetic regulation and cell signalling. Synthetic analogues of NAD+ are therefore of great interest as chemical tools for medicinal chemistry, chemical biology and drug discovery. Herein, we report the chemical synthesis and full analytical characterisation of three stereoisomers of 2″-amino NAD+, and their biochemical evaluation against two classes of NAD+-consuming enzymes: the human sirtuins 1-3, and the bacterial toxin TccC3. To rationalise the observed activities, molecular docking experiments were carried out with SIRT1 and SIRT2, which identified the correct orientation of the pyrophosphate linkage as a major determinant for activity in this series. These results, together with results from stability tests and a conformational analysis, allow, for the first time, a side-by-side comparison of the chemical and biochemical features, and analytical properties, of different 2″-amino NAD+ stereoisomers. Our findings provide insight into the recognition of co-substrate analogues by sirtuins, and will greatly facilitate the application of these important NAD+ analogues as chemical tool compounds for mechanistic studies with these as well as other NAD+-dependent enyzmes.


Asunto(s)
Sirtuinas , Adenosina Difosfato , Epigénesis Genética , Humanos , Simulación del Acoplamiento Molecular , NAD/metabolismo , Sirtuina 2/metabolismo , Sirtuinas/metabolismo , Estereoisomerismo , Transferasas/metabolismo
14.
Open Biol ; 12(3): 210365, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35317661

RESUMEN

Tankyrases are ADP-ribosylating enzymes that regulate many physiological processes in the cell and are considered promising drug targets for cancer and fibrotic diseases. The catalytic ADP-ribosyltransferase domain of tankyrases contains a unique zinc-binding motif of unknown function. Recently, this motif was suggested to be involved in the catalytic activity of tankyrases. In this work, we set out to study the effect of the zinc-binding motif on the activity, stability and structure of human tankyrases. We generated mutants of human tankyrase (TNKS) 1 and TNKS2, abolishing the zinc-binding capabilities, and characterized the proteins biochemically and biophysically in vitro. We further generated a crystal structure of TNKS2, in which the zinc ion was oxidatively removed. Our work shows that the zinc-binding motif in tankyrases is a crucial structural element which is particularly important for the structural integrity of the acceptor site. While mutation of the motif rendered TNKS1 inactive, probably due to introduction of major structural defects, the TNKS2 mutant remained active and displayed an altered activity profile compared to the wild-type.


Asunto(s)
Neoplasias , Tanquirasas , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Dominio Catalítico , Humanos , Tanquirasas/química , Tanquirasas/metabolismo , Zinc
15.
Bioessays ; 44(1): e2100240, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34816463

RESUMEN

ADP-ribosylation is a post-translational modification catalyzed by writer enzymes - ADP-ribosyltransferases. The modification is part of many signaling events, can modulate the function and stability of target proteins, and often results in the recruitment of reader proteins that bind to the ADP-ribosyl groups. Erasers are integral actors in these signaling events and reverse the modification. ADP-ribosylation can be targeted with therapeutics and many inhibitors against writers exist, with some being in clinical use. Inhibitors against readers and erasers are sparser and development of these has gained momentum only in recent years. Drug discovery has been hampered by the lack of specific tools, however many significant advances in the methods have recently been reported. We discuss assays used in the field with a focus on methods allowing efficient identification of small molecule inhibitors and profiling against enzyme families. While human proteins are focused, the methods can be also applied to bacterial toxins and virus encoded erasers that can be targeted to treat infectious diseases in the future.


Asunto(s)
ADP Ribosa Transferasas , Procesamiento Proteico-Postraduccional , ADP Ribosa Transferasas/metabolismo , Adenosina Difosfato , Bioensayo , Descubrimiento de Drogas , Humanos
16.
Front Microbiol ; 12: 766591, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867898

RESUMEN

Mycoplasma pneumoniae infection often causes respiratory diseases in humans, particularly in children and adults with atypical pneumonia and community-acquired pneumonia (CAP), and is often exacerbated by co-infection with other lung diseases, such as asthma, bronchitis, and chronic obstructive pulmonary disorder. Community-acquired respiratory distress syndrome toxin (CARDS TX) is the only exotoxin produced by M. pneumoniae and has been extensively studied for its ADP-ribosyltransferase (ADPRT) activity and cellular vacuolization properties. Additionally, CARDS TX induces inflammatory responses, resulting in cell swelling, nuclear lysis, mucus proliferation, and cell vacuolization. CARDS TX enters host cells by binding to the host receptor and is then reverse transported to the endoplasmic reticulum to exert its pathogenic effects. In this review, we focus on the structural characteristics, functional activity, distribution and receptors, mechanism of cell entry, and inflammatory response of CARDS TX was examined. Overall, the findings of this review provide a theoretical basis for further investigation of the mechanism of M. pneumoniae infection and the development of clinical diagnosis and vaccines.

17.
Biomolecules ; 11(12)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34944446

RESUMEN

Legionella pneumophila is a Gram-negative intracellular pathogen that causes Legionnaires' disease in elderly or immunocompromised individuals. This bacterium relies on the Dot/Icm (Defective in organelle trafficking/Intracellular multiplication) Type IV Secretion System (T4SS) and a large (>330) set of effector proteins to colonize the host cell. The structural variability of these effectors allows them to disrupt many host processes. Herein, we report the crystal structure of MavL to 2.65 Å resolution. MavL adopts an ADP-ribosyltransferase (ART) fold and contains the distinctive ligand-binding cleft of ART proteins. Indeed, MavL binds ADP-ribose with Kd of 13 µM. Structural overlay of MavL with poly-(ADP-ribose) glycohydrolases (PARGs) revealed a pair of aspartate residues in MavL that align with the catalytic glutamates in PARGs. MavL also aligns with ADP-ribose "reader" proteins (proteins that recognize ADP-ribose). Since no glycohydrolase activity was observed when incubated in the presence of ADP-ribosylated PARP1, MavL may play a role as a signaling protein that binds ADP-ribose. An interaction between MavL and the mammalian ubiquitin-conjugating enzyme UBE2Q1 was revealed by yeast two-hybrid and co-immunoprecipitation experiments. This work provides structural and molecular insights to guide biochemical studies aimed at elucidating the function of MavL. Our findings support the notion that ubiquitination and ADP-ribosylation are global modifications exploited by L. pneumophila.


Asunto(s)
Legionella pneumophila/crecimiento & desarrollo , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Células HEK293 , Células HeLa , Humanos , Legionella pneumophila/enzimología , Modelos Moleculares , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Células THP-1 , Ubiquitinación
18.
Microorganisms ; 9(12)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34946116

RESUMEN

The anti-virulence strategy is designed to prevent bacterial virulence factors produced by pathogenic bacteria from initiating and sustaining an infection. One family of bacterial virulence factors is the mono-ADP-ribosyltransferase toxins, which are produced by pathogens as tools to compromise the target host cell. These toxins are bacterial enzymes that exploit host cellular NAD+ as the donor substrate to modify an essential macromolecule acceptor target in the host cell. This biochemical reaction modifies the target macromolecule (often protein or DNA) and functions in a binary fashion to turn the target activity on or off by blocking or impairing a critical process or pathway in the host. A structural biology approach to the anti-virulence method to neutralize the cytotoxic effect of these factors requires the search and design of small molecules that bind tightly to the enzyme active site and prevent catalytic function essentially disarming the pathogen. This method requires a high-resolution structure to serve as the model for small molecule inhibitor development, which illuminates the path to drug development. This alternative strategy to antibiotic therapy represents a paradigm shift that may circumvent multi-drug resistance in the offending microbe through anti-virulence therapy. In this report, the rationale for the anti-virulence structural approach will be discussed along with recent efforts to apply this method to treat honey bee diseases using natural products.

19.
Bioorg Med Chem ; 52: 116511, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34801828

RESUMEN

The scaffold of TIQ-A, a previously known inhibitor of human poly-ADP-ribosyltransferase PARP1, was utilized to develop inhibitors against human mono-ADP-ribosyltransferases through structure-guided design and activity profiling. By supplementing the TIQ-A scaffold with small structural changes, based on a PARP10 inhibitor OUL35, selectivity changed from poly-ADP-ribosyltransferases towards mono-ADP-ribosyltransferases. Binding modes of analogs were experimentally verified by determining complex crystal structures with mono-ADP-ribosyltransferase PARP15 and with poly-ADP-ribosyltransferase TNKS2. The best analogs of the study achieved 10-20-fold selectivity towards mono-ADP-ribosyltransferases PARP10 and PARP15 while maintaining micromolar potencies. The work demonstrates a route to differentiate compound selectivity between mono- and poly-ribosyltransferases of the human ARTD family.


Asunto(s)
ADP Ribosa Transferasas/antagonistas & inhibidores , Isoquinolinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Tiofenos/farmacología , ADP Ribosa Transferasas/metabolismo , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Isoquinolinas/síntesis química , Isoquinolinas/química , Modelos Moleculares , Estructura Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/química
20.
Mol Cell ; 81(22): 4591-4604.e8, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34592134

RESUMEN

Protein ADP-ribosylation is a reversible post-translational modification that transfers ADP-ribose from NAD+ onto acceptor proteins. Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolases (PARGs), which remove the modification, regulates diverse cellular processes. However, the chemistry and physiological functions of mono(ADP-ribosyl)ation (MARylation) remain elusive. Here, we report that Arabidopsis zinc finger proteins SZF1 and SZF2, key regulators of immune gene expression, are MARylated by the noncanonical ADP-ribosyltransferase SRO2. Immune elicitation promotes MARylation of SZF1/SZF2 via dissociation from PARG1, which has an unconventional activity in hydrolyzing both poly(ADP-ribose) and mono(ADP-ribose) from acceptor proteins. MARylation antagonizes polyubiquitination of SZF1 mediated by the SH3 domain-containing proteins SH3P1/SH3P2, thereby stabilizing SZF1 proteins. Our study uncovers a noncanonical ADP-ribosyltransferase mediating MARylation of immune regulators and underpins the molecular mechanism of maintaining protein homeostasis by the counter-regulation of ADP-ribosylation and polyubiquitination to ensure proper immune responses.


Asunto(s)
ADP-Ribosilación , Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Inmunidad de la Planta , Ubiquitinación , Dedos de Zinc , ADP Ribosa Transferasas/metabolismo , Adenosina Difosfato/química , Arabidopsis/metabolismo , Sistemas CRISPR-Cas , Genes de Plantas , Glicósido Hidrolasas/metabolismo , Homeostasis , Humanos , Hidrólisis , Mutación , Plantas Modificadas Genéticamente , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteostasis , Plantones/metabolismo , Especificidad por Sustrato , Tristetraprolina/química , Técnicas del Sistema de Dos Híbridos , Ubiquitina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA