Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cells ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38727275

RESUMEN

ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Sistema Nervioso Central , Neuroglía , Humanos , Transportadoras de Casetes de Unión a ATP/metabolismo , Neuroglía/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/patología
2.
Alzheimers Dement ; 20(7): 4970-4984, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687251

RESUMEN

INTRODUCTION: Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action. METHODS: Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE ε4/ε4 and Trem2*R47H. The potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts. RESULTS: We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes. DISCUSSION: These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics. HIGHLIGHTS: A novel approach to validate genetic risk factors for late-onset AD (LOAD) is presented. LOAD risk variants were knocked in to conserved mouse loci. Variant effects were assayed by transcriptional analysis. Risk variants in Abca7, Mthfr, Plcg2, and Sorl1 loci modeled molecular signatures of clinical disease. This approach should generate more translationally relevant animal models.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Ratones Transgénicos , Enfermedad de Alzheimer/genética , Animales , Ratones , Humanos , Factores de Riesgo , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Masculino , Encéfalo/patología , Encéfalo/metabolismo , Femenino
3.
Alzheimers Dement ; 20(5): 3629-3648, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38556850

RESUMEN

Alzheimer's disease (AD) is a growing problem worldwide. Since ABCA7's identification as a risk gene, it has been extensively researched for its role in the disease. We review its recently characterized structure and what the mechanistic insights teach us about its function. We furthermore provide an overview of identified ABCA7 mutations, their presence in different ancestries and protein domains and how they might cause AD. For ABCA7 PTC variants and a VNTR expansion, haploinsufficiency is proposed as the most likely mode-of-action, although splice events could further influence disease risk. Overall, the need to better understand expression of canonical ABCA7 and its isoforms in disease is indicated. Finally, ABCA7's potential functions in lipid metabolism, phagocytosis, amyloid deposition, and the interplay between these three, is described. To conclude, in this review, we provide a comprehensive overview and discussion about the current knowledge on ABCA7 in AD, and what research questions remain. HIGHLIGHTS: Alzheimer's risk-increasing variants in ABCA7 can be found in up to 7% of AD patients. We review the recently characterized protein structure of ABCA7. We present latest insights in genetics, expression patterns, and functions of ABCA7.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Transportadoras de Casetes de Unión a ATP/genética , Predisposición Genética a la Enfermedad , Mutación , Animales
4.
Alzheimers Dement ; 20(7): 4914-4934, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38506634

RESUMEN

BACKGROUND: Variants in ABCA7, a member of the ABC transporter superfamily, have been associated with increased risk for developing late onset Alzheimer's disease (LOAD). METHODS: CRISPR-Cas9 was used to generate an Abca7V1613M variant in mice, modeling the homologous human ABCA7V1599M variant, and extensive characterization was performed. RESULTS: Abca7V1613M microglia show differential gene expression profiles upon lipopolysaccharide challenge and increased phagocytic capacity. Homozygous Abca7V1613M mice display elevated circulating cholesterol and altered brain lipid composition. When crossed with 5xFAD mice, homozygous Abca7V1613M mice display fewer Thioflavin S-positive plaques, decreased amyloid beta (Aß) peptides, and altered amyloid precursor protein processing and trafficking. They also exhibit reduced Aß-associated inflammation, gliosis, and neuronal damage. DISCUSSION: Overall, homozygosity for the Abca7V1613M variant influences phagocytosis, response to inflammation, lipid metabolism, Aß pathology, and neuronal damage in mice. This variant may confer a gain of function and offer a protective effect against Alzheimer's disease-related pathology. HIGHLIGHTS: ABCA7 recognized as a top 10 risk gene for developing Alzheimer's disease. Loss of function mutations result in increased risk for LOAD. V1613M variant reduces amyloid beta plaque burden in 5xFAD mice. V1613M variant modulates APP processing and trafficking in 5xFAD mice. V1613M variant reduces amyloid beta-associated damage in 5xFAD mice.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones Transgénicos , Placa Amiloide , Animales , Ratones , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Placa Amiloide/patología , Placa Amiloide/genética , Placa Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Neuronas/metabolismo , Neuronas/patología , Modelos Animales de Enfermedad , Humanos , Encéfalo/patología , Encéfalo/metabolismo , Microglía/metabolismo , Microglía/patología , Fagocitosis/genética , Precursor de Proteína beta-Amiloide/genética
5.
Alzheimers Res Ther ; 15(1): 195, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946268

RESUMEN

BACKGROUND: The Alzheimer's disease (AD) risk gene ABCA7 has suggested functions in lipid metabolism and the immune system. Rare premature termination codon (PTC) mutations and an expansion of a variable number of tandem repeats (VNTR) polymorphism in the gene, both likely cause a lower ABCA7 expression and hereby increased risk for AD. However, the exact mechanism of action remains unclear. By studying CSF biomarkers reflecting different types of AD-related pathological processes, we aim to get a better insight in those processes and establish a biomarker profile of mutation carriers. METHODS: The study population consisted of 229 AD patients for whom CSF was available and ABCA7 sequencing and VNTR genotyping had been performed. This included 28 PTC mutation and 16 pathogenic expansion carriers. CSF levels of Aß1-42, Aß1-40, P-tau181, T-tau, sAPPα, sAPPß, YKL-40, and hFABP were determined using ELISA and Meso Scale Discovery assays. We compared differences in levels of these biomarkers and the Aß ratio between AD patients with or without an ABCA7 PTC mutation or expansion using linear regression on INT-transformed data with APOE-status, age and sex as covariates. RESULTS: Carriers of ABCA7 expansion mutations had significantly lower Aß1-42 levels (P = 0.022) compared with non-carrier patients. The effect of the presence of ABCA7 mutations on CSF levels was especially pronounced in APOE ε4-negative carriers. In addition, VNTR expansion carriers had reduced Aß1-40 (P = 0.023), sAPPα (P = 0.047), sAPPß (P = 0.016), and YKL-40 (P = 0.0036) levels. CONCLUSIONS: Our results are suggestive for an effect on APP processing by repeat expansions given the changes in the amyloid-related CSF biomarkers that were found in carriers. The decrease in YKL-40 levels in expansion carriers moreover suggests that these patients potentially have a reduced inflammatory response to AD damage. Moreover, our findings suggest the existence of a mechanism, independent of lowered expression, affecting neuropathology in expansion carriers.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Transportadoras de Casetes de Unión a ATP/genética , Biomarcadores , Proteína 1 Similar a Quitinasa-3/metabolismo , Codón sin Sentido , Mutación/genética , Amiloide/metabolismo
6.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37895139

RESUMEN

In this manuscript, we introduced a French EOAD patient in Korea who carried the presenilin-1 (PSEN1) Glu318Gly mutations with four possible risk variants, including sortilin-related receptor 1 (SORL1) Glu270Lys, ATP-binding cassette subfamily A member 7 (ABCA7) Val1946Met, translocase of outer mitochondrial membrane 40 (TOMM40) Arg239Trp, and granulin (GRN) Ala505Gly. The patient started to present memory decline and behavioral dysfunction in his early 60s. His brain imaging presented amyloid deposits by positron emission tomography (PET-CT). The multimer detection system (MDS) screening test for plasma for amyloid oligomers was also positive, which supported the AD diagnosis. It was verified that PSEN1 Glu318Gly itself may not impact amyloid production. However, additional variants were found in other AD and non-AD risk genes, as follows: SORL1 Glu270Lys was suggested as a risk mutation for AD and could increase amyloid peptide production and impair endosome functions. ABCA7 Val1946Met was a novel variant that was predicted to be damaging. The GRN Ala505Gly was a variant with uncertain significance; however, it may reduce the granulin levels in the plasma of dementia patients. Pathway analysis revealed that PSEN1 Glu318Gly may work as a risk factor along with the SORL1 and ABCA7 variants since pathway analysis revealed that PSEN1 could directly interact with them through amyloid-related and lipid metabolism pathways. TOMM40 and PSEN1 could have common mechanisms through mitochondrial dysfunction. It may be possible that PSEN1 Glu318Gly and GRN Ala505Gly would impact disease by impairing immune-related pathways, including microglia and astrocyte development, or NFkB-related pathways. Taken together, the five risk factors may contribute to disease-related pathways, including amyloid and lipid metabolism, or impair immune mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Granulinas/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Transporte de Membrana/genética , Mutación , Tomografía Computarizada por Tomografía de Emisión de Positrones , Presenilina-1/genética , Presenilina-1/metabolismo , Masculino , Persona de Mediana Edad
7.
Mol Neurobiol ; 60(10): 5548-5556, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37322288

RESUMEN

Alzheimer's disease (AD) is the most common type of neurodegenerative disease and its pathogenesis is still unclear. Genetic factors are thought to account for a large proportion of the overall AD phenotypes. ATP-binding cassette transporter A7 (ABCA7) is one of the most important risk gene for AD. Multiple forms of ABCA7 variants significantly increase the risk of AD, such as single-nucleotide polymorphisms, premature termination codon variants, missense variants, variable number tandem repeat, mutations, and alternative splicing. AD patients with ABCA7 variants usually exhibit typical clinical and pathological features of traditional AD with a wide age of onset range. ABCA7 variants can alter ABCA7 protein expression levels and protein structure to affect protein functions such as abnormal lipid metabolism, amyloid precursor protein (APP) processing, and immune cell function. Specifically, ABCA7 deficiency can cause neuronal apoptosis by inducing endoplasmic reticulum stress through the PERK/eIF2α pathway. Second, ABCA7 deficiency can increase Aß production by upregulating the SREBP2/BACE1 pathway and promoting APP endocytosis. In addition, the ability of microglia to phagocytose and degrade Aß is destroyed by ABCA7 deficiency, leading to reduced clearance of Aß. Finally, disturbance of lipid metabolism may also be an important method by which ABCA7 variants influence the incidence rate of AD. In the future, more attention should be given to different ABCA7 variants and ABCA7 targeted therapies for AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Péptidos beta-Amiloides/metabolismo
8.
Cells ; 12(11)2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37296582

RESUMEN

The ABC transporter ABCA7 has been found to be aberrantly expressed in a variety of cancer types, including breast cancer. We searched for specific epigenetic and genetic alterations and alternative splicing variants of ABCA7 in breast cancer and investigated whether these alterations are associated with ABCA7 expression. By analyzing tumor tissues from breast cancer patients, we found CpGs at the exon 5-intron 5 boundary aberrantly methylated in a molecular subtype-specific manner. The detection of altered DNA methylation in tumor-adjacent tissues suggests epigenetic field cancerization. In breast cancer cell lines, DNA methylation levels of CpGs in promoter-exon 1, intron 1, and at the exon 5-intron 5 boundary were not correlated with ABCA7 mRNA levels. By qPCR involving intron-specific and intron-flanking primers, we identified intron-containing ABCA7 mRNA transcripts. The occurrence of intron-containing transcripts was neither molecular subtype-specific nor directly correlated with DNA methylation at the respective exon-intron boundaries. Treatment of breast cancer cell lines MCF-7, BT-474, SK-BR3, and MDA-MB-231 with doxorubicin or paclitaxel for 72 h resulted in altered ABCA7 intron levels. Shotgun proteomics revealed that an increase in intron-containing transcripts was associated with significant dysregulation of splicing factors linked to alternative splicing.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Metilación de ADN/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Empalme Alternativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
J Alzheimers Dis ; 94(1): 281-290, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37212111

RESUMEN

BACKGROUND: Both sleep deficiencies and Alzheimer's disease (AD) disproportionately affect older African Americans. Genetic susceptibility to AD further compounds risk for cognitive decline in this population. Aside from APOE ɛ4, ABCA7 rs115550680 is the strongest genetic locus associated with late-onset AD in African Americans. While sleep and ABCA7 rs115550680 independently influence late-life cognitive outcomes, we know too little about the interplay between these two factors on cognitive function. OBJECTIVE: We investigated the interaction between sleep and ABCA7 rs115550680 on hippocampal-dependent cognitive function in older African Americans. METHODS: One-hundred fourteen cognitively healthy older African Americans were genotyped for ABCA7 risk (n = 57 carriers of risk "G" allele; n = 57 non-carriers), responded to lifestyle questionnaires, and completed a cognitive battery. Sleep was assessed via a self-reported rating of sleep quality (poor, average, good). Covariates included age and years of education. RESULTS: Using ANCOVA, we found that carriers of the risk genotype who reported poor or average sleep quality demonstrated significantly poorer generalization of prior learning-a cognitive marker of AD-compared to their non-risk counterparts. Conversely, there was no genotype-related difference in generalization performance in individuals who reported good sleep quality. CONCLUSION: These results indicate that sleep quality may be neuroprotective against genetic risk for AD. Future studies employing more rigorous methodology should investigate the mechanistic role of sleep neurophysiology in the pathogenesis and progression of AD associated with ABCA7. There is also need for the continued development of non-invasive sleep interventions tailored to racial groups with specific AD genetic risk profiles.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Enfermedad de Alzheimer , Negro o Afroamericano , Disfunción Cognitiva , Sueño , Anciano , Humanos , Enfermedad de Alzheimer/etnología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/psicología , Transportadoras de Casetes de Unión a ATP/genética , Negro o Afroamericano/genética , Cognición/fisiología , Disfunción Cognitiva/genética , Predisposición Genética a la Enfermedad , Genotipo , Sueño/genética , Calidad del Sueño
10.
Neurol Sci ; 44(6): 1987-2001, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36701017

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a debilitating and highly heritable neurodegenerative disease. Early-onset AD (EOAD) was defined as AD occurring before age 65. Although it has a high genetic risk, EOAD due to PSEN2 variation is very rare. ABCA7 is an important risk gene for AD. Previously reported cases mainly carried variations in a single pathogenic or risk gene. METHODS AND RESULTS: In this study, we report a 35-year-old female carrying variants in both the PSEN2 gene (c.640G > T p.V214L) and ABCA7 gene (c.2848G > A p.V950M). Four previously reported cases carried PSEN2 V214L, and no reported cases carried ABCA7 V950M. She had a history of migraine, patent foramen ovale, spontaneous subarachnoid hemorrhage without aneurysm, and multiple cerebral microhemorrhages. Her MMSE score was 24/30, and her MoCA score was 22/30. The concentration of Aß42 and the ratio of Aß42 to Aß40 in cerebral spinal fluid were obviously decreased. Published variants of PSEN2 and ABCA7 in PubMed were reviewed, and the patients' characteristics were summarized and compared to provide information for the clinical diagnosis of AD. CONCLUSIONS: It is necessary to conduct genetic screening in cases with atypical manifestations.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Femenino , Anciano , Adulto , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedades Neurodegenerativas/genética , Pruebas Genéticas , Mutación , Presenilina-2/genética , Transportadoras de Casetes de Unión a ATP/genética
11.
J Neurochem ; 164(1): 57-76, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36326588

RESUMEN

Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder. Despite increasing evidence of the importance of metabolic dysregulation in AD, the underlying metabolic changes that may impact amyloid plaque formation are not understood, particularly for late-onset AD. This study analyzed genome-wide association studies (GWAS), transcriptomics, and proteomics data obtained from several data repositories to obtain differentially expressed (DE) multi-omics elements in mouse models of AD. We characterized the metabolic modulation in these data sets using gene ontology, transcription factor, pathway, and cell-type enrichment analyses. A predicted lipid signature was extracted from genome-scale metabolic networks (GSMN) and subsequently validated in a lipidomic data set derived from cortical tissue of ABCA-7 null mice, a mouse model of one of the genes associated with late-onset AD. Moreover, a metabolome-wide association study (MWAS) was performed to further characterize the association between dysregulated lipid metabolism in human blood serum and genes associated with AD risk. We found 203 DE transcripts, 164 DE proteins, and 58 DE GWAS-derived mouse orthologs associated with significantly enriched metabolic biological processes. Lipid and bioenergetic metabolic pathways were significantly over-represented across the AD multi-omics data sets. Microglia and astrocytes were significantly enriched in the lipid-predominant AD-metabolic transcriptome. We also extracted a predicted lipid signature that was validated and robustly modeled class separation in the ABCA7 mice cortical lipidome, with 11 of these lipid species exhibiting statistically significant modulations. MWAS revealed 298 AD single nucleotide polymorphisms-metabolite associations, of which 70% corresponded to lipid classes. These results support the importance of lipid metabolism dysregulation in AD and highlight the suitability of mapping AD multi-omics data into GSMNs to identify metabolic alterations.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Lipidómica , Estudio de Asociación del Genoma Completo , Multiómica , Ratones Noqueados , Lípidos , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo
12.
Trends Mol Med ; 29(2): 152-172, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36503994

RESUMEN

Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are a 48-member superfamily of membrane proteins that actively transport a variety of biological substrates across lipid membranes. Their functional diversity defines an expansive involvement in myriad aspects of human biology. At least 21 ABC transporters underlie rare monogenic disorders, with even more implicated in the predisposition to and symptomology of common and complex diseases. Such broad (patho)physiological relevance places this class of proteins at the intersection of disease causation and therapeutic potential, underlining them as promising targets for drug discovery, as exemplified by the transformative CFTR (ABCC7) modulator therapies for cystic fibrosis. This review will explore the growing relevance of ABC transporters to human disease and their potential as small-molecule drug targets.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Fibrosis Quística , Humanos , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Adenosina Trifosfato/metabolismo
13.
EMBO J ; 42(3): e111065, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36484366

RESUMEN

Phospholipid extrusion by ABC subfamily A (ABCA) exporters is central to cellular physiology, although the specifics of the underlying substrate interactions and transport mechanisms remain poorly resolved at the molecular level. Here we report cryo-EM structures of lipid-embedded human ABCA7 in an open state and in a nucleotide-bound, closed state at resolutions between 3.6 and 4.0 Å. The former reveals an ordered patch of bilayer lipids traversing the transmembrane domain (TMD), while the latter reveals a lipid-free, closed TMD with a small extracellular opening. These structures offer a structural framework for both substrate entry and exit from the ABCA7 TMD and highlight conserved rigid-body motions that underlie the associated conformational transitions. Combined with functional analysis and molecular dynamics (MD) simulations, our data also shed light on lipid partitioning into the ABCA7 TMD and localized membrane perturbations that underlie ABCA7 function and have broader implications for other ABCA family transporters.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Simulación de Dinámica Molecular , Humanos , Transportadoras de Casetes de Unión a ATP/química , Transporte Biológico , Microscopía por Crioelectrón , Fosfolípidos
14.
bioRxiv ; 2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38187758

RESUMEN

Introduction: Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action. Methods: Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE4 and Trem2*R47H. Potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts. Results: We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes. Discussion: These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics.

15.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499090

RESUMEN

Huntington's disease (HD) is a lethal neurodegenerative disorder without efficient therapeutic options. The inefficient translation from preclinical and clinical research into clinical use is mainly attributed to the lack of (i) understanding of disease initiation, progression, and involved molecular mechanisms; (ii) knowledge of the possible HD target space and general data awareness; (iii) detailed characterizations of available disease models; (iv) better suitable models; and (v) reliable and sensitive biomarkers. To generate robust HD-like symptoms in a mouse model, the neomycin resistance cassette was excised from zQ175 mice, generating a new line: zQ175Δneo. We entirely describe the dynamics of behavioral, neuropathological, and immunohistological changes from 15-57 weeks of age. Specifically, zQ175Δneo mice showed early astrogliosis from 15 weeks; growth retardation, body weight loss, and anxiety-like behaviors from 29 weeks; motor deficits and reduced muscular strength from 36 weeks; and finally slight microgliosis at 57 weeks of age. Additionally, we collected the entire bioactivity network of small-molecule HD modulators in a multitarget dataset (HD_MDS). Hereby, we uncovered 358 unique compounds addressing over 80 different pharmacological targets and pathways. Our data will support future drug discovery approaches and may serve as useful assessment platform for drug discovery and development against HD.


Asunto(s)
Enfermedad de Huntington , Animales , Ratones , Enfermedad de Huntington/metabolismo , Técnicas de Sustitución del Gen , Modelos Animales de Enfermedad , Cognición , Descubrimiento de Drogas
16.
Genes (Basel) ; 13(11)2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36421824

RESUMEN

SNPs in ABCA7 confer the largest genetic risk for Alzheimer's Disease (AD) in African Americans (AA) after APOE ε4. However, the relationship between ABCA7 and cognitive function has not been thoroughly examined. We investigated the effects of five known AD risk SNPs and 72 CpGs in ABCA7, as well as their interactions, on general cognitive function (cognition) in 634 older AA without dementia from Genetic Epidemiology Network of Arteriopathy (GENOA). Using linear mixed models, no SNP or CpG was associated with cognition after multiple testing correction, but five CpGs were nominally associated (p < 0.05). Four SNP-by-CpG interactions were associated with cognition (FDR q < 0.1). Contrast tests show that methylation is associated with cognition in some genotype groups (p < 0.05): a 1% increase at cg00135882 and cg22271697 is associated with a 0.68 SD decrease and 0.14 SD increase in cognition for those with the rs3764647 GG/AG (p = 0.004) and AA (p = 2 × 10-4) genotypes, respectively. In addition, a 1% increase at cg06169110 and cg17316918 is associated with a 0.37 SD decrease (p = 2 × 10-4) and 0.33 SD increase (p = 0.004), respectively, in cognition for those with the rs115550680 GG/AG genotype. While AD risk SNPs in ABCA7 were not associated with cognition in this sample, some have interactions with proximal methylation on cognition.


Asunto(s)
Enfermedad de Alzheimer , Polimorfismo de Nucleótido Simple , Humanos , Anciano , Negro o Afroamericano/genética , Cognición , Transportadoras de Casetes de Unión a ATP/genética , Enfermedad de Alzheimer/genética
17.
Neurobiol Dis ; 174: 105880, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36191742

RESUMEN

The classic pathologic hallmarks of Alzheimer's disease (AD) are amyloid plaques and neurofibrillary tangles (AD neuropathologic changes, or ADNC). However, brains from individuals clinically diagnosed with "AD-type" (amnestic) dementia usually harbor heterogeneous neuropathologies in addition to, or other than, ADNC. We hypothesized that some AD-type dementia associated genetic single nucleotide variants (SNVs) identified from large genomewide association studies (GWAS) were associated with non-ADNC neuropathologies. To test this hypothesis, we analyzed data from multiple studies with available genotype and neuropathologic phenotype information. Clinical AD/dementia risk alleles of interest were derived from the very large GWAS by Bellenguez et al. (2022) who reported 83 clinical AD/dementia-linked SNVs in addition to the APOE risk alleles. To query the pathologic phenotypes associated with variation of those SNVs, National Alzheimer's disease Coordinating Center (NACC) neuropathologic data were linked to AD Sequencing Project (ADSP) and AD Genomics Consortium (ADGC) data. Separate data were obtained from the harmonized Religious Orders Study and the Rush Memory and Aging Project (ROSMAP). A total of 4811 European participants had at least ADNC neuropathology data and also genotype data available; data were meta-analyzed across cohorts. As expected, a subset of dementia-associated SNVs were associated with ADNC risk in Europeans-e.g., BIN1, PICALM, CR1, MME, and COX7C. Other gene variants linked to (clinical) AD dementia were associated with non-ADNC pathologies. For example, the associations of GRN and TMEM106B SNVs with limbic-predominant age-related TDP-43 neuropathologic changes (LATE-NC) were replicated. In addition, SNVs in TNIP1 and WNT3 previously reported as AD-related were instead associated with hippocampal sclerosis pathology. Some genotype/neuropathology association trends were not statistically significant at P < 0.05 after correcting for multiple testing, but were intriguing. For example, variants in SORL1 and TPCN1 showed trends for association with LATE-NC whereas Lewy body pathology trended toward association with USP6NL and BIN1 gene variants. A smaller cohort of non-European subjects (n = 273, approximately one-half of whom were African-Americans) provided the basis for additional exploratory analyses. Overall, these findings were consistent with the hypothesis that some genetic variants linked to AD dementia risk exert their affect by influencing non-ADNC neuropathologies.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Estudio de Asociación del Genoma Completo , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/patología , Placa Amiloide/genética , Placa Amiloide/patología , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética
18.
Proc Natl Acad Sci U S A ; 119(43): e2206083119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36269859

RESUMEN

Genome-wide association studies (GWASs) have identified genetic loci associated with the risk of Alzheimer's disease (AD), but the molecular mechanisms by which they confer risk are largely unknown. We conducted a metabolome-wide association study (MWAS) of AD-associated loci from GWASs using untargeted metabolic profiling (metabolomics) by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). We identified an association of lactosylceramides (LacCer) with AD-related single-nucleotide polymorphisms (SNPs) in ABCA7 (P = 5.0 × 10-5 to 1.3 × 10-44). We showed that plasma LacCer concentrations are associated with cognitive performance and genetically modified levels of LacCer are associated with AD risk. We then showed that concentrations of sphingomyelins, ceramides, and hexosylceramides were altered in brain tissue from Abca7 knockout mice, compared with wild type (WT) (P = 0.049-1.4 × 10-5), but not in a mouse model of amyloidosis. Furthermore, activation of microglia increases intracellular concentrations of hexosylceramides in part through induction in the expression of sphingosine kinase, an enzyme with a high control coefficient for sphingolipid and ceramide synthesis. Our work suggests that the risk for AD arising from functional variations in ABCA7 is mediated at least in part through ceramides. Modulation of their metabolism or downstream signaling may offer new therapeutic opportunities for AD.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Enfermedad de Alzheimer , Ceramidas , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Ceramidas/metabolismo , Cromatografía Liquida , Estudio de Asociación del Genoma Completo , Lactosilceramidos , Metaboloma , Ratones Noqueados , Esfingomielinas , Espectrometría de Masas en Tándem
19.
J Biol Chem ; 298(10): 102411, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36007616

RESUMEN

Sphingomyelin (SM) is an abundant plasma membrane and plasma lipoprotein sphingolipid. We previously reported that ATP-binding cassette family A protein 1 (ABCA1) deficiency in humans and mice decreases plasma SM levels. However, overexpression, induction, downregulation, inhibition, and knockdown of ABCA1 in human hepatoma Huh7 cells did not decrease SM efflux. Using unbiased siRNA screening, here, we identified that ABCA7 plays a role in the biosynthesis and efflux of SM without affecting cellular uptake and metabolism. Since loss of function mutations in the ABCA7 gene exhibit strong associations with late-onset Alzheimer's disease across racial groups, we also studied the effects of ABCA7 deficiency in the mouse brain. Brains of ABCA7-deficient (KO) mice, compared with WT, had significantly lower levels of several SM species with long chain fatty acids. In addition, we observed that older KO mice exhibited behavioral deficits in cognitive discrimination in the active place avoidance task. Next, we performed synaptic transmission studies in brain slices obtained from older mice. We found anomalies in synaptic plasticity at the intracortical synapse in layer II/III of the lateral entorhinal cortex but not in the hippocampal CA3-CA1 synapses in KO mice. These synaptic abnormalities in KO brain slices were rescued with extracellular SM supplementation but not by supplementation with phosphatidylcholine. Taken together, these studies identify a role of ABCA7 in brain SM metabolism and the importance of SM in synaptic plasticity and cognition, as well as provide a possible explanation for the association between ABCA7 and late-onset Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Cognición , Corteza Entorrinal , Plasticidad Neuronal , Esfingomielinas , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Corteza Entorrinal/metabolismo , Esfingomielinas/biosíntesis , Ratones Noqueados
20.
Front Aging Neurosci ; 14: 819499, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693347

RESUMEN

Objective: The study aimed to clarify the association of the 21 single nucleotide polymorphisms (SNPs) with Alzheimer's disease (AD) in the population of southern China. Methods: A case-control study was conducted with a total sample size of 490 subjects (246 patients with AD and 244 age- and gender-matched healthy controls) enrolled in this study. Twenty-one selected SNPs were detected using SNaPshot assay and polymerase chain reaction (PCR) technique. Then, we assessed how these SNPs correlated with AD susceptibility. Results: The results showed that rs3764650 of ABCA7 was closely correlated with risen AD morbidity in the allele [P = 0.010, odds ratio (OR) = 1.43, 95% confidence interval (CI) 1.09-1.89], dominant (P = 0.004, OR = 1.71, 95% CI 1.19-2.46), and additive (P = 0.012, OR = 1.42, 95% CI 1.08-1.86) models. However, rs4147929 of ABCA7 was related to higher AD risk in the allele (P = 0.006, OR = 1.45, 95% CI 1.11-1.89), dominant (P = 0.012, OR = 1.59, 95% CI 1.11-2.27), and additive (P = 0.010, OR = 1.40, 95% CI 1.08-1.81) models. In addition, the frequencies of the G-allele at rs3764650 (P = 0.030) and the A-allele at rs4147929 (P = 0.001) in AD were statistically higher in APOE ε4 carriers in comparison to non-carriers. Conclusion: This study demonstrated that the G-allele at rs3764650 and the A-allele at rs4147929 appeared at higher risk for developing AD, particularly in APOE ε4 carriers. Moreover, it was observed that rs3764650 and rs4147929 of ABCA7 were linked to AD. More in-depth research with a relatively large sample is needed to make the results more convincing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA