Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mitochondrion ; 79: 101956, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245193

RESUMEN

The functional mitochondrion is vital for the propagation of the malaria parasite in the human host. Members of the SPFH protein family, Prohibitins (PHBs), are known to play crucial roles in maintaining mitochondrial homeostasis and cellular functions. Here, we have functionally characterized the homologue of the Plasmodium falciparumProhibitin-2 (PfPhb2) protein. A transgenic parasite line, generated using the selection-linked integration (SLI) strategy for C-terminal tagging, was utilized for cellular localization as well as for inducible knock-down of PfPhb2. We show that PfPhb2 localizes in the parasite mitochondrion during the asexual life cycle. Inducible knock-down of PfPhb2 by GlmS ribozyme caused no significant effect on the growth and multiplication of parasites. However, depletion of PfPhb2 under mitochondrial-specific stress conditions, induced by inhibiting the essential mitochondrial AAA-protease, ClpQ protease, results in enhanced inhibition of parasite growth, mitochondrial ROS production, mitochondrial membrane potential loss and led to mitochondrial fission/fragmentation, ultimately culminating in apoptosis-like cell-death. Further, PfPhb2 depletion renders the parasites more susceptible to mitochondrial targeting drug proguanil. These data suggest the functional involvement of PfPhb2 along with ClpQ protease in stabilization of various mitochondrial proteins to maintain mitochondrial homeostasis and functioning. Overall, we show that PfPhb2 has an anti-apoptotic role in maintaining mitochondrial homeostasis in the parasite.

2.
Autophagy ; : 1-12, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38964378

RESUMEN

The prohibitins Phb1 and Phb2 assemble at the mitochondrial inner membrane to form a multi-dimeric complex. These scaffold proteins are highly conserved in eukaryotic cells, from yeast to mammals, and have been implicated in a variety of mitochondrial functions including aging, proliferation, and degenerative and metabolic diseases. In mammals, PHB2 regulates PINK1-PRKN mediated mitophagy by interacting with lipidated MAP1LC3B/LC3B. Despite their high conservation, prohibitins have not been linked to mitophagy in budding yeasts. In this study, we demonstrate that both Phb1 and Phb2 are required to sustain mitophagy in Saccharomyces cerevisiae. Prohibitin-dependent mitophagy requires formation of the Phb1-Phb2 complex and a conserved AIM/LIR-like motif identified in both yeast prohibitins. Furthermore, both Phb1 and Phb2 interact and exhibit mitochondrial colocalization with Atg8. Interestingly, we detected a basal C terminus processing of the mitophagy receptor Atg32 that depends on the presence of the i-AAA Yme1. In the absence of prohibitins this processing is highly enhanced but reverted by the inactivation of the rhomboid protease Pcp1. Together our results revealed a novel role of yeast prohibitins in mitophagy through its interaction with Atg8 and regulating an Atg32 proteolytic event. Abbreviation: AIM/LIR: Atg8-family interacting motif/LC3-interacting region; ANOVA: analysis of variance; ATG/Atg: autophagy related; C terminus/C-terminal: carboxyl terminus/carboxyl-terminal; GFP: green fluorescent protein; HA: human influenza hemagglutinin; Idh1: isocitrate dehydrogenase 1; MAP1C3B/LC3B: microtubule associated protein 1 light chain 3 beta; mCh: mCherry; MIM: mitochondrial inner membrane; MOM: mitochondrial outer membrane; N starvation: nitrogen starvation; N terminus: amino terminus; PARL: presenilin associated rhomboid like; Pcp1: processing of cytochrome c peroxidase 1; PCR: polymerase chain reaction; PGAM5: PGAM family member 5 mitochondrial serine/threonine protein phosphatase; PHBs/Phb: prohibitins; PINK1: PTEN induced kinase 1; PMSF: phenylmethylsulfonyl fluoride; PRKN: parkin RBR E3 ubiquitin protein ligase; SD: synthetic defined medium; SDS: sodium dodecyl sulfate; SMD-N: synthetic defined medium lacking nitrogen; WB: western blot; WT: wild type; Yme1: yeast mitochondrial escape 1; YPD: yeast extract-peptone-dextrose medium; YPLac: yeast extract-peptone-lactate medium.

3.
J Bacteriol ; 206(7): e0023724, 2024 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-38940598

RESUMEN

Responding to changes in oxygen levels is critical for aerobic microbes. In Caulobacter crescentus, low oxygen is sensed by the FixL-FixJ two-component system which induces multiple genes, including those involved in heme biosynthesis, to accommodate microaerobic conditions. The FixLJ inhibitor FixT is also induced under low oxygen conditions and is degraded by the Lon protease when the oxygen levels are sufficient, which together provides negative feedback proposed to adjust FixLJ signaling thresholds during changing conditions. Here, we address whether degradation of FixT by the Lon protease contributes to phenotypic defects associated with loss of Lon. We find that ∆lon strains are deficient in FixLJ-dependent heme biosynthesis, consistent with elevated FixT levels as deletion of fixT suppresses this defect. Transcriptomics validate this result as, along with heme biosynthesis, there is diminished expression of many FixL-activated genes in ∆lon. However, stabilization of FixT in ∆lon strains does not contribute to restoring any known Lon-related fitness defect, such as cell morphology defects or stress sensitivity. In fact, cells lacking both FixT and Lon are compromised in viability during growth in standard aerobic conditions. Our work highlights the complexity of protease-dependent regulation of transcription factors and explains the molecular basis of defective heme accumulation in Lon-deficient Caulobacter. IMPORTANCE: The Lon protease shapes protein quality control, signaling pathways, and stress responses in many bacteria species. Loss of Lon often results in multiple phenotypic consequences. In this work, we found a connection between the Lon protease and deficiencies in heme accumulation that then led to our finding of a global change in gene expression due in part to degradation of a regulator of the hypoxic response. However, loss of degradation of this regulator did not explain other phenotypes associated with Lon deficiencies demonstrating the complex and multiple pathways that this highly conserved protease can impact.


Asunto(s)
Proteínas Bacterianas , Caulobacter crescentus , Regulación Bacteriana de la Expresión Génica , Proteasa La , Proteolisis , Transducción de Señal , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Caulobacter crescentus/enzimología , Caulobacter crescentus/crecimiento & desarrollo , Proteasa La/metabolismo , Proteasa La/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Hemo/metabolismo , Histidina Quinasa
4.
Gene ; 895: 148028, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38007160

RESUMEN

Spastic paraplegia 7 (SPG7) is an m-AAA protease subunit involved in mitochondrial morphology and physiology. However, its function in animal reproduction is yet to be evaluated. In this study, its molecular features, subcellular localization, and expression dynamics were investigated to analyze its potential function in the reproduction of male Phascolosoma esculenta, an economically important marine species in China. The full-length cDNA of P. esculenta spg7 (Pe-spg7) measures 3053 bp and encodes an 853-amino acid protein (Pe-SPG7). Pe-SPG7 includes two transmembrane domains, an AAA domain and a proteolytic domain. Amino acid sequence alignment revealed that SPG7 was conserved during evolution. The mRNA and protein expression of spg7 indicated its involvement in reproduction. Its expression was the highest in coelomic fluid, where spermatids develop, and it was significantly higher in the breeding stage than in the nonbreeding stage. SPG7 was mainly found in the mitochondria of spermatids in the coelomic fluid, indicating that it functions in this organelle in spermatids. Immunofluorescence experiments showed that SPG7 was expressed and colocalized in the mitochondria during spermiogenesis, suggesting its involvement in P. esculenta spermiogenesis. Therefore, SPG7 may participate in spermiogenesis by functioning in the mitochondria and regulate the reproduction of male P. esculenta. This study provided insights into the function of SPG7 in animal reproduction and P. esculenta gametogenesis.


Asunto(s)
Mitocondrias , Paraplejía Espástica Hereditaria , Animales , Masculino , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Espermatogénesis/genética , Paraplejía Espástica Hereditaria/genética , Metaloendopeptidasas/genética
5.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140969, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37852516

RESUMEN

ATP-dependent proteases FtsH are conserved in bacteria, mitochondria, and chloroplasts, where they play an essential role in degradation of misfolded/unneeded membrane and cytosolic proteins. It has also been demonstrated that the FtsH homologous protein BB0789 is crucial for mouse and tick infectivity and in vitro growth of the Lyme disease-causing agent Borrelia burgdorferi. This is not surprising, considering B. burgdorferi complex life cycle, residing in both in mammals and ticks, which requires a wide range of membrane proteins and short-lived cytosolic regulatory proteins to invade and persist in the host organism. In the current study, we have solved the crystal structure of the cytosolic BB0789166-614, lacking both N-terminal transmembrane α-helices and the small periplasmic domain. The structure revealed the arrangement of the AAA+ ATPase and the zinc-dependent metalloprotease domains in a hexamer ring, which is essential for ATPase and proteolytic activity. The AAA+ domain was found in an ADP-bound state, while the protease domain showed coordination of a zinc ion by two histidine residues and one aspartic acid residue. The loop region that forms the central pore in the oligomer was poorly defined in the crystal structure and therefore predicted by AlphaFold to complement the missing structural details, providing a complete picture of the functionally relevant hexameric form of BB0789. We confirmed that BB0789 is functionally active, possessing both protease and ATPase activities, thus providing novel structural-functional insights into the protein, which is known to be absolutely necessary for B. burgdorferi to survive and cause Lyme disease.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Enfermedad de Lyme/microbiología , Mamíferos/metabolismo , Metaloproteasas/genética , Metaloproteasas/metabolismo , Péptido Hidrolasas/metabolismo , Zinc/metabolismo
6.
Expert Opin Ther Targets ; 28(1-2): 9-15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38156441

RESUMEN

INTRODUCTION: Mitochondrial LonP1 is an ATP-powered protease that also functions as an ATP-dependent chaperone. LonP1 plays a pivotal role in regulating mitochondrial proteostasis, metabolism and cell stress responses. Cancer cells exploit the functions of LonP1 to combat oncogenic stressors such as hypoxia, proteotoxicity, and oxidative stress, and to reprogram energy metabolism enabling cancer cell proliferation, chemoresistance, and metastasis. AREAS COVERED: LonP1 has emerged as a potential target for anti-cancer therapeutics. We review how cytoprotective functions of LonP1 can be leveraged by cancer cells to support oncogenic growth, proliferation, and survival. We also offer insights into small molecule inhibitors that target LonP1 by two distinct mechanisms: competitive inhibition of its protease activity and allosteric inhibition of its ATPase activity, both of which are crucial for its protease and chaperone functions. EXPERT OPINION: We highlight advantages of identifying specific, high-affinity allosteric inhibitors blocking the ATPase activity of LonP1. The future discovery of such inhibitors has potential application either alone or in conjunction with other anticancer agents, presenting an innovative approach and target for cancer therapeutics.


Asunto(s)
Metabolismo Energético , Péptido Hidrolasas , Humanos , Proliferación Celular , Adenosina Trifosfatasas , Adenosina Trifosfato
7.
Enzymes ; 54: 205-220, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37945172

RESUMEN

Mitochondria are multifunctional organelles that play a central role in a wide range of life-sustaining tasks in eukaryotic cells, including adenosine triphosphate (ATP) production, calcium storage and coenzyme generation pathways such as iron-sulfur cluster biosynthesis. The wide range of mitochondrial functions is carried out by a diverse array of proteins comprising approximately 1500 proteins or polypeptides. Degradation of these proteins is mainly performed by four AAA+ proteases localized in mitochondria. These AAA+ proteases play a quality control role in degrading damaged or misfolded proteins and perform various other functions. This chapter describes previously identified roles for these AAA+ proteases that are localized in the mitochondria of animal cells.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Animales , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Mitocondriales/metabolismo , Péptidos/metabolismo
8.
Mol Cell ; 83(19): 3470-3484.e8, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37751741

RESUMEN

Folding of newly synthesized proteins poses challenges for a functional proteome. Dedicated protein quality control (PQC) systems either promote the folding of nascent polypeptides at ribosomes or, if this fails, ensure their degradation. Although well studied for cytosolic protein biogenesis, it is not understood how these processes work for mitochondrially encoded proteins, key subunits of the oxidative phosphorylation (OXPHOS) system. Here, we identify dedicated hubs in proximity to mitoribosomal tunnel exits coordinating mitochondrial protein biogenesis and quality control. Conserved prohibitin (PHB)/m-AAA protease supercomplexes and the availability of assembly chaperones determine the fate of newly synthesized proteins by molecular triaging. The localization of these competing activities in the vicinity of the mitoribosomal tunnel exit allows for a prompt decision on whether newly synthesized proteins are fed into OXPHOS assembly or are degraded.


Asunto(s)
Mitocondrias , Triaje , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas/metabolismo , Biosíntesis de Proteínas , Fosforilación Oxidativa , Proteínas Ribosómicas/metabolismo
9.
Mol Microbiol ; 119(1): 101-111, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456794

RESUMEN

Targeted protein degradation plays important roles in stress responses in all cells. In E. coli, the membrane-bound AAA+ FtsH protease degrades cytoplasmic and membrane proteins. Here, we demonstrate that FtsH degrades cyclopropane fatty acid (CFA) synthase, whose synthesis is induced upon nutrient deprivation and entry into stationary phase. We find that neither the disordered N-terminal residues nor the structured C-terminal residues of the kinetically stable CFA-synthase dimer are required for FtsH recognition and degradation. Experiments with fusion proteins support a model in which an internal degron mediates FtsH recognition as a prelude to unfolding and proteolysis. These findings elucidate the terminal step in the life cycle of CFA synthase and provide new insight into FtsH function.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteasas ATP-Dependientes/química , Proteasas ATP-Dependientes/metabolismo , Proteolisis , Proteínas Bacterianas/metabolismo
10.
PeerJ ; 10: e14350, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389399

RESUMEN

Mitochondria play essential cellular roles in Adenosine triphosphate (ATP) synthesis, calcium homeostasis, and metabolism, but these vital processes have potentially deadly side effects. The production of the reactive oxygen species (ROS) and the aggregation of misfolded mitochondrial proteins can lead to severe mitochondrial damage and even cell death. The accumulation of mitochondrial damage is strongly implicated in aging and several incurable diseases, including neurodegenerative disorders and cancer. To oppose this, metazoans utilize a variety of quality control strategies, including the degradation of the damaged mitochondrial proteins by the mitochondrial-resident proteases of the ATPase Associated with the diverse cellular Activities (AAA+) family. This mini-review focuses on the quality control mediated by the mitochondrial-resident proteases of the AAA+ family used to combat the accumulation of damaged mitochondria and on how the failure of this mitochondrial quality control contributes to diseases.


Asunto(s)
Mitocondrias , Enfermedades Neurodegenerativas , Humanos , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Endopeptidasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Péptido Hidrolasas/metabolismo , Pliegue de Proteína
11.
Cell Rep ; 40(12): 111405, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36130509

RESUMEN

In bacteria, AAA+ proteases such as Lon and ClpXP degrade substrates with exquisite specificity. These machines capture the energy of ATP hydrolysis to power unfolding and degradation of target substrates. Here, we show that a mutation in the ATP binding site of ClpX shifts protease specificity to promote degradation of normally Lon-restricted substrates. However, this ClpX mutant is worse at degrading ClpXP targets, suggesting an optimal balance in substrate preference for a given protease that is easy to alter. In vitro, wild-type ClpXP also degrades Lon-restricted substrates more readily when ATP levels are reduced, similar to the shifted specificity of mutant ClpXP, which has altered ATP hydrolysis kinetics. Based on these results, we suggest that the rates of ATP hydrolysis not only power substrate unfolding and degradation, but also tune protease specificity. We consider various models for this effect based on emerging structures of AAA+ machines showing conformationally distinct states.


Asunto(s)
Proteínas de Escherichia coli , Proteasa La , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfato/metabolismo , Endopeptidasa Clp/química , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Proteasa La/metabolismo , Pliegue de Proteína , Especificidad por Sustrato
12.
Cell Rep ; 39(9): 110890, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649372

RESUMEN

The membrane-bound AAA protease FtsH is the key player controlling protein quality in bacteria. Two single-pass membrane proteins, HflK and HflC, interact with FtsH to modulate its proteolytic activity. Here, we present structure of the entire FtsH-HflKC complex, comprising 12 copies of both HflK and HflC, all of which interact reciprocally to form a cage, as well as four FtsH hexamers with periplasmic domains and transmembrane helices enclosed inside the cage and cytoplasmic domains situated at the base of the cage. FtsH K61/D62/S63 in the ß2-ß3 loop in the periplasmic domain directly interact with HflK, contributing to complex formation. Pull-down and in vivo enzymatic activity assays validate the importance of the interacting interface for FtsH-HflKC complex formation. Structural comparison with the substrate-bound human m-AAA protease AFG3L2 offers implications for the HflKC cage in modulating substrate access to FtsH. Together, our findings provide a better understanding of FtsH-type AAA protease holoenzyme assembly and regulation.


Asunto(s)
Proteínas de Escherichia coli , Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos
13.
J Biol Chem ; 298(3): 101694, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35143841

RESUMEN

Lon protease is a conserved ATP-dependent serine protease composed of an AAA+ domain that mechanically unfolds substrates and a serine protease domain that degrades these unfolded substrates. In yeast, dysregulation of Lon protease (PIM1) attenuates lifespan and leads to gross mitochondrial morphological perturbations. Although structures of the bacterial and human Lon protease reveal a hexameric assembly, yeast PIM1 was speculated to form a heptameric assembly and is uniquely characterized by a ∼50-residue insertion between the ATPase and protease domains. To further understand the yeast-specific properties of PIM1, we determined a high-resolution cryo-electron microscopy structure of PIM1 in a substrate-translocating state. Here, we reveal that PIM1 forms a hexamer, conserved with that of bacterial and human Lon proteases, wherein the ATPase domains form a canonical closed spiral that enables pore loop residues to translocate substrates to the protease chamber. In the substrate-translocating state, PIM1 protease domains form a planar protease chamber in an active conformation and are uniquely characterized by a ∼15-residue C-terminal extension. These additional C-terminal residues form an α-helix located along the base of the protease domain. Finally, we did not observe density for the yeast-specific insertion between the ATPase and protease domains, likely due to high conformational flexibility. Biochemical studies to investigate the insertion using constructs that truncated or replaced the insertion with a glycine-serine linker suggest that the yeast-specific insertion is dispensable for PIM1's enzymatic function. Altogether, our structural and biochemical studies highlight unique components of PIM1 machinery and demonstrate evolutionary conservation of Lon protease function.


Asunto(s)
Proteínas Mitocondriales , Proteasa La , Proteínas Proto-Oncogénicas c-pim-1 , Proteínas de Saccharomyces cerevisiae , Serina Endopeptidasas , Proteasas ATP-Dependientes/metabolismo , Adenosina Trifosfatasas/metabolismo , Microscopía por Crioelectrón , Humanos , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Péptido Hidrolasas/metabolismo , Proteasa La/química , Proteasa La/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/química , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Relación Estructura-Actividad
14.
Protein Sci ; 31(9): e4410, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36630366

RESUMEN

AAA+ proteolytic machines play essential roles in maintaining and rebalancing the cellular proteome in response to stress, developmental cues, and environmental changes. Of the five AAA+ proteases in Escherichia coli, FtsH is unique in its attachment to the inner membrane and its function in degrading both membrane and cytosolic proteins. E. coli dihydrofolate reductase (DHFR) is a stable and biophysically well-characterized protein, which a previous study found resisted FtsH degradation despite the presence of an ssrA degron. By contrast, we find that FtsH degrades DHFR fused to a long peptide linker and ssrA tag. Surprisingly, we also find that FtsH degrades DHFR with shorter linkers and ssrA tag, and without any linker or tag. Thus, FtsH must be able to recognize a sequence element or elements within DHFR. We find that FtsH degradation of DHFR is noncanonical in the sense that it does not rely upon recognition of an unstructured polypeptide at or near the N-terminus or C-terminus of the substrate. Results using peptide-array experiments, mutant DHFR proteins, and fusion proteins suggest that FtsH recognizes an internal sequence in a species of DHFR that is partially unfolded. Overall, our findings provide insight into substrate recognition by FtsH and indicate that its degradation capacity is broader than previously reported.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Proteínas de la Membrana/química , Proteasas ATP-Dependientes/química , Proteínas Bacterianas/química
15.
J Biol Chem ; 297(4): 101239, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34563541

RESUMEN

The Lon AAA+ (adenosine triphosphatases associated with diverse cellular activities) protease (LonA) converts ATP-fuelled conformational changes into sufficient mechanical force to drive translocation of a substrate into a hexameric proteolytic chamber. To understand the structural basis for the substrate translocation process, we determined the cryo-electron microscopy (cryo-EM) structure of Meiothermus taiwanensis LonA (MtaLonA) in a substrate-engaged state at 3.6 Å resolution. Our data indicate that substrate interactions are mediated by the dual pore loops of the ATPase domains, organized in spiral staircase arrangement from four consecutive protomers in different ATP-binding and hydrolysis states. However, a closed AAA+ ring is maintained by two disengaged ADP-bound protomers transiting between the lowest and highest position. This structure reveals a processive rotary translocation mechanism mediated by LonA-specific nucleotide-dependent allosteric coordination among the ATPase domains, which is induced by substrate binding.


Asunto(s)
Adenosina Trifosfatasas/química , Bacterias/enzimología , Proteínas Bacterianas/química , Proteasa La/química , Adenosina Trifosfatasas/genética , Bacterias/genética , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Proteasa La/genética , Estructura Secundaria de Proteína
16.
Front Genet ; 12: 659220, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33986772

RESUMEN

FtsH belongs to the AAA+ ATP-dependent family of proteases, which participate in diverse cellular processes and are ubiquitous among bacteria, chloroplasts, and mitochondria. FtsH is poorly characterized in most organisms, especially compared to other major housekeeping proteases. In the current study, we examined the source of FtsH essentiality in the human oral microbiome species Streptococcus mutans, one of the primary etiological agents of dental caries. By creating a conditionally lethal ftsH mutant, we were able to identify a secondary suppressor missense mutation in the vicR gene, encoding the response regulator of the essential VicRK two-component system (TCS). Transcriptomic analysis of the vicR (G195R) mutant revealed significantly reduced expression of 46 genes, many of which were located within the genomic island Tnsmu2, which harbors the mutanobactin biosynthetic gene cluster. In agreement with the transcriptomic data, deletion of the mutanobactin biosynthetic gene cluster suppressed ftsH essentiality in S. mutans. We also explored the role of FtsH in S. mutans physiology and demonstrated its critical role in stress tolerance, especially acid stress. The presented results reveal the first insights within S. mutans for the pleiotropic regulatory function of this poorly understood global regulator.

17.
Elife ; 102021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33929321

RESUMEN

The Lon AAA+ protease (LonA) is a ubiquitous ATP-dependent proteolytic machine, which selectively degrades damaged proteins or native proteins carrying exposed motifs (degrons). Here we characterize the structural basis for substrate recognition and discrimination by the N-terminal domain (NTD) of LonA. The results reveal that the six NTDs are attached to the hexameric LonA chamber by flexible linkers such that the formers tumble independently of the latter. Further spectral analyses show that the NTD selectively interacts with unfolded proteins, protein aggregates, and degron-tagged proteins by two hydrophobic patches of its N-lobe, but not intrinsically disordered substrate, α-casein. Moreover, the NTD selectively binds to protein substrates when they are thermally induced to adopt unfolded conformations. Collectively, our findings demonstrate that NTDs enable LonA to perform protein quality control to selectively degrade proteins in damaged states and suggest that substrate discrimination and selective degradation by LonA are mediated by multiple NTD interactions.


There are many different types of protein which each have different roles in biology. Most proteins are surrounded by water and are folded so that their water-attracting regions are on the outside and more fat-like regions, which repel water, are on the inside. When a protein becomes damaged or is assembled incorrectly, some of the fat-like regions end up on the outside of the protein and become exposed to water. This can prevent the protein from performing its role and harm the cell instead. LonA proteases are responsible for dismantling and recycling these harmful proteins, as well as proteins that have been labelled for destruction. They do this by unfolding the unwanted protein and transporting it into an enclosed chamber made of six LonA molecules. Once inside the chamber, the target protein is broken down into smaller fragments that can be used to build other structures. LonA proteases contain a region called the N-terminal domain, or NTD for short, which is thought to be responsible for identifying which proteins need degrading. Yet it remained unclear how the NTD recognizes and binds to these target proteins. To answer this question, Tzeng et al. studied the detailed structure of a LonA protease that had been purified from bacteria cells. This revealed that the NTD of LonA contains two water-repelling regions which bind to fat-like segments on the surface of proteins that have become unfolded or tagged for destruction. Further experiments showed that the NTD is bound to the main body of LonA via a 'flexible linker'. This led Tzeng et al. to propose that the NTD sways around loosely at the end of LonA searching for proteins with exposed water-repelling regions. Once an NTD identifies and attaches to a target, the NTDs of the other LonA molecules then bind to the protein and help insert it into the chamber. Proteases are a vital component of all biological systems. Controlling protein destruction and recycling is a key factor in how cells divide and respond to a changing environment. This study provides new insights into how LonA operates in bacteria, which may apply to proteases more widely. This contributes to our knowledge of fundamental biology and may also be relevant in a range of diseases where protein recycling is defective or inefficient.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Caseínas/metabolismo , Proteasa La/química , Proteasa La/metabolismo , Bacterias/química , Bacterias/genética , Proteínas Bacterianas/genética , Caseínas/química , Proteasa La/genética , Conformación Proteica en Hélice alfa , Dominios Proteicos , Pliegue de Proteína , Especificidad por Sustrato
18.
Mol Microbiol ; 115(6): 1094-1109, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33231899

RESUMEN

Caseinolytic proteases (Clp) are central to bacterial proteolysis and control cellular physiology and stress responses. They are composed of a double-ring compartmentalized peptidase (ClpP) and a AAA+ unfoldase (ClpX or ClpA/ClpC). Unlike many bacteria, the opportunistic pathogen Pseudomonas aeruginosa contains two ClpP homologs: ClpP1 and ClpP2. The specific functions of these homologs, however, are largely elusive. Here, we report that the active form of PaClpP2 is a part of a heteromeric PaClpP17 P27 tetradecamer that is required for proper biofilm development. PaClpP114 and PaClpP17 P27 complexes exhibit distinct peptide cleavage specificities and interact differentially with P. aeruginosa ClpX and ClpA. Crystal structures reveal that PaClpP2 has non-canonical features in its N- and C-terminal regions that explain its poor interaction with unfoldases. However, experiments in vivo indicate that the PaClpP2 peptidase active site uniquely contributes to biofilm development. These data strongly suggest that the specificity of different classes of ClpP peptidase subunits contributes to the biological outcome of proteolysis. This specialized role of PaClpP2 highlights it as an attractive target for developing antimicrobial agents that interfere specifically with late-stage P. aeruginosa development.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Proteolisis , Pseudomonas aeruginosa/metabolismo , Serina Endopeptidasas/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Biopelículas/crecimiento & desarrollo , Cristalografía por Rayos X , Conformación Proteica , Isoformas de Proteínas/genética , Serina Endopeptidasas/genética , Especificidad por Sustrato
19.
Biochim Biophys Acta Biomembr ; 1863(2): 183526, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33278347

RESUMEN

FtsH is a membrane-bound protease that plays a crucial role in proteolytic regulation of many cellular functions. It is universally conserved in bacteria and responsible for the degradation of misfolded or misassembled proteins. A recent study has determined the structure of bacterial FtsH in detergent micelles. To properly study the function of FtsH in a native-like environment, we reconstituted the FtsH complex into lipid nanodiscs. We found that FtsH in membrane scaffold protein (MSP) nanodiscs maintains its native hexameric conformation and is functionally active. We further investigated the effect of the lipid bilayer composition (acyl chain length, saturation, head group charge and size) on FtsH proteolytic activity. We found that the lipid acyl chain length influences AaFtsH activity in nanodiscs, with the greatest activity in a bilayer of di-C18:1 PC. We conclude that MSP nanodiscs are suitable model membranes for further in vitro studies of the FtsH protease complex.


Asunto(s)
Proteasas ATP-Dependientes/química , Proteínas Bacterianas/química , Membrana Dobles de Lípidos/química , Nanoestructuras/química , Pliegue de Proteína , Aquifex/enzimología , Aquifex/genética , Proteínas Bacterianas/genética
20.
FEBS J ; 288(1): 95-98, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32571006

RESUMEN

Protein degradation plays a vital role in the correct maintenance of a cell, not only under normal physiological conditions but also in response to stress. In the human pathogen Mtb, this crucial cellular task is performed by several ATPase associated with diverse cellular activities proteases including ClpC1P. Ziemski et al. performed a bacterial adenylate cyclase two-hybrid screen to identify ClpC1 substrates and showed the Type II TA systems represent a major group of ClpC1-interacting proteins. Comment on: https://doi.org/10.1111/febs.15335.


Asunto(s)
Mycobacterium tuberculosis , Sistemas Toxina-Antitoxina , Proteínas Bacterianas/genética , Proteínas de Choque Térmico , Humanos , Mycobacterium tuberculosis/genética , Péptido Hidrolasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA