Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Toxics ; 12(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39195652

RESUMEN

5-Hydroxytryptamine (5-HT) modulators are commonly prescribed medications with potentially life-threatening outcomes, particularly serotonin syndrome (SS). Early prediction of SS is critical not only to avoid lethal drug combinations but also to initiate appropriate treatment. The present work aimed to recognize the significant predictors of SS through a retrospective cross-sectional study that was conducted among patients exposed to an overdose of 5-HT modulators and admitted to a poison control center where 112 patients were enrolled. Of them, 21 patients were diagnosed with SS, and 66.7% of patients with SS were exposed to long-term co-ingestion. There was a noticeable surge in SS between April and May, and 52.4% of patients who suffered from SS were admitted after suicidal exposure (p < 0.05). Patients with SS showed severe presentation indicated by high-grade poison severity scores (PSS) and low Glasgow coma scales (GCS). PSS was a significant predictor of SS with an area under the curve of 0.879. PCO2, pulse, GCS, HCO3, and erythrocytic count were other significant predictors of SS. Combinations of serotonergic agents increase the likelihood of developing SS. Clinicians should be vigilant when prescribing a combination of serotonergic therapy, particularly for patients on illicit sympathomimetic and over-the-counter medications like dextromethorphan.

2.
Animal ; 18(8): 101254, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39106553

RESUMEN

The risk of acquiring new intramammary infections is high at the end of lactation, especially for the high milk-producing dairy animals. Resistance to bacterial infection increases following the completion of mammary gland involution after milking cessation. The serotonin precursor 5-hydroxytryptophan (5-HTP) could accelerate involution by increasing circulating serotonin levels, but ruminal microbes may degrade 5-HTP if orally administered to adult ruminants. It is unclear whether rumen-protected 5-HTP could effectively mediate circulating serotonin (5-hydroxytryptamine, 5-HT) and therefore accelerate mammary gland involution in ruminants. Goats were used as a model in the current study to investigate the effects of rumen-protected 5-HTP on behaviour, 5-HT metabolism, and mammary involution in ruminants. In the first experiment, 16 female Dazu black goats were assigned to one of four groups in a randomised block design. The treatments included a basal diet plus 0, 4, 20, or 100 mg/kg BW of rumen-protected 5-HTP. Serum was collected at 0, 3, 6, 12, and 24 h after offering the rumen-protected 5-HTP in the morning feed, and the behaviours were monitored. In the second experiment, 12 female Dazu black goats (Somatic cell count < 250 000) were randomly assigned to the control (basal diet) or rumen-protected 5-HTP group (basal diet plus 20 mg/kg BW). Milk or mammary secretions were manually collected aseptically on d -1, 1, 2, 3, 4, and 5 around weaning. The results depicted that rumen-protected 5-HTP supplementation elevated circulating 5-HTP and 5-hydroxyindole acetic acid concentrations, while 20 mg/kg BW of rumen-protected 5-HTP supplementation lowered the goats' locomotive activity. A high concentration of rumen-protected 5-HTP (100 mg/kg BW) increased serum alkaline phosphatase and gamma-glutamyl transpeptidase concentrations. Moreover, oral supplementation with 20 mg/kg BW of rumen-protected 5-HTP accelerated mammary gland involution and reduced feed intake in goats after weaning. These results demonstrate that oral supplementation with rumen-protected 5-HTP influences 5-HT metabolism and accelerates mammary gland involution after milking cessation in ruminants.


Asunto(s)
5-Hidroxitriptófano , Cabras , Lactancia , Glándulas Mamarias Animales , Rumen , Serotonina , Animales , Cabras/fisiología , Femenino , 5-Hidroxitriptófano/farmacología , 5-Hidroxitriptófano/administración & dosificación , Rumen/metabolismo , Rumen/efectos de los fármacos , Serotonina/sangre , Serotonina/metabolismo , Glándulas Mamarias Animales/efectos de los fármacos , Lactancia/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Suplementos Dietéticos/análisis , Leche/química , Leche/metabolismo , Dieta/veterinaria
3.
J Biotechnol ; 393: 100-108, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39097100

RESUMEN

5-Hydroxytryptophan (5-HTP), a precursor of the neurotransmitter serotonin in mammals, has demonstrated efficacy in treating various diseases such as depression, fibromyalgia and obesity. However, conventional biosynthesis methods of 5-HTP are limited by low yield and high reagent and process costs. In this study, the strain C1T7-S337A/F318Y with optimized promoter distribution was obtained, and the 5-HTP yield was 60.30 % higher than that of the initial strain. An efficient fermentation process for 5-HTP synthesis was developed using strain C1T7-S337A/F318Y with whey powder as a substrate for cell growth and inducer production. Shake flask fermentation experiments yielded 1.302 g/L 5-HTP from 2.0 g/L L-tryptophan (L-Trp), surpassing the whole-cell biocatalysis by 42.86 %. Scale-up to a 5 L fermenter further increased the yield to 1.649 g/L. This fermentation strategy substantially slashed reagent cost by 95.39 %, providing a more economically viable and environmentally sustainable route for industrial biosynthesis of 5-HTP. Moreover, it contributes to the broader utilization of whey powder in various industries.


Asunto(s)
5-Hidroxitriptófano , Escherichia coli , Fermentación , Suero Lácteo , 5-Hidroxitriptófano/metabolismo , Suero Lácteo/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Triptófano/metabolismo , Reactores Biológicos/microbiología
5.
J Pharm Biomed Anal ; 248: 116321, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959757

RESUMEN

Inherited disorders of monoamine neurotransmitters are a subset of inborn errors of metabolism affecting biochemical pathways of catecholamines, serotonin or their enzymatic cofactors. Usually, their clinical presentation is similar to those of other common neurological syndromes. For this reason, they are frequently under-recognized and misdiagnosed. Because cerebrospinal fluid concentration of catecholamine metabolites (3-orthomethyldopa and homovanillic acid) and serotonin metabolites (5-hydroxytryptophan and 5-hydroxyindolacetic acid) presents a direct correlation with their brain levels, analysis of this group of compounds is critical to reach an accurate diagnosis. Although there are several published liquid chromatography-based bioanalytical methods for the quantification of these compounds, most of them present disadvantages, making their application difficult to implement in routine clinical practice. In this study, a rapid and simple UHPLC-MS/MS method for simultaneous quantification of 3-orthomethyldopa, 5-hydroxytryptophan, 5-hydroxyindolacetic acid and homovanillic acid in human cerebrospinal fluid was validated. All the evaluated performance parameters, including linearity, carryover, accuracy and precision (within and between-day), lower limit of quantitation, recovery, matrix effect and stability under different conditions met the acceptance criteria from international guidelines. Additionally, 10 human cerebrospinal fluid samples collected via lumbar puncture from 10 pediatric patients were quantified using the validated method to assess its clinical application and diagnostic utility for inherited monoamine neurotransmitter metabolism.


Asunto(s)
5-Hidroxitriptófano , Ácido Homovanílico , Espectrometría de Masas en Tándem , Humanos , Ácido Homovanílico/líquido cefalorraquídeo , Espectrometría de Masas en Tándem/métodos , 5-Hidroxitriptófano/líquido cefalorraquídeo , 5-Hidroxitriptófano/análisis , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados , Límite de Detección , Niño , Cromatografía Liquida/métodos
6.
Front Immunol ; 15: 1398310, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835767

RESUMEN

Background: Hydroxytryptophan (5-HTP) can regulate the synthesis of 5-Hydroxytryptamine (5-HT) and melatonin (MT). In a previous metabolome analysis, we found that 5-HTP is an effective ingredient in yeast culture for regulating rumen fermentation. However, research on the effect of this microbial product (5-HTP) as a functional feed additive in sheep production is still not well explained. Therefore, this study examined the effects of 5-HTP on sheep rumen function and growth performance using in vitro and in vivo models. Methods: A two-factor in vitro experiment involving different 5-HTP doses and fermentation times was conducted. Then, in the in vivo experiment, 10 sheep were divided into a control group which was fed a basal diet, and a 5-HTP group supplemented with 8 mg/kg 5-HTP for 60 days. Results: The results showed that 5-HTP supplementation had a significant effect on in vitro DMD, pH, NH3-N, acetic acid, propionic acid, and TVFA concentrations. 5-HTP altered rumen bacteria composition and diversity indices including Chao1, Shannon, and Simpson. Moreover, the in vivo study on sheep confirmed that supplementing with 8 mg/kg of 5-HTP improved rumen fermentation efficiency and microbial composition. This led to enhanced sheep growth performance and increased involvement in the tryptophan metabolic pathway, suggesting potential benefits. Conclusion: Dietary 5-HTP (8 mg/kg DM) improves sheep growth performance by enhancing ruminal functions, antioxidant capacity, and tryptophan metabolism. This study can provide a foundation for the development of 5-HTP as a functional feed additive in ruminants' production.


Asunto(s)
5-Hidroxitriptófano , Alimentación Animal , Antioxidantes , Suplementos Dietéticos , Fermentación , Rumen , Triptófano , Animales , Rumen/metabolismo , Rumen/microbiología , Triptófano/metabolismo , 5-Hidroxitriptófano/farmacología , Ovinos , Antioxidantes/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Dieta/veterinaria
7.
Front Allergy ; 5: 1385168, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38845678

RESUMEN

Background: Previous research showed that 5-hydroxytryptophan (5HTP), a metabolic precursor of serotonin, reduces allergic lung inflammation by inhibiting eosinophil migration across endothelial monolayers. Objective: It is unknown if serotonin receptors are involved in mediating this 5HTP function or if serotonin receptor (HTR) single nucleotide polymorphisms (SNPs) associate with lung function in humans. Methods: Serotonin receptor subtypes were assessed by qPCR, western blot, confocal microscopy, pharmacological inhibitors and siRNA knockdown. HTR SNPs were assessed in two cohorts. Results: Pharmacological inhibition or siRNA knockdown of the serotonin receptors HTR1A or HTR1B in endothelial cells abrogated the inhibitory effects of 5HTP on eosinophil transendothelial migration. In contrast, eosinophil transendothelial migration was not inhibited by siRNA knockdown of HTR1A or HTR1B in eosinophils. Surprisingly, these HTRs were intracellular in endothelial cells and an extracellular supplementation with serotonin did not inhibit eosinophil transendothelial migration. This is consistent with the inability of serotonin to cross membranes, the lack of selective serotonin reuptake receptors on endothelial cells, and the studies showing minimal impact of selective serotonin reuptake inhibitors on asthma. To extend our HTR studies to humans with asthma, we examined the CHIRAH and GALA cohorts for HTR SNPs that affect HTR function or are associated with behavior disorders. A polygenic index of SNPs in HTRs was associated with lower lung function in asthmatics. Conclusions: Serotonin receptors mediate 5HTP inhibition of transendothelial migration and HTR SNPs associate with lower lung function. These results may serve to aid in design of novel interventions for allergic inflammation.

8.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731967

RESUMEN

Tryptophan metabolites, such as 5-hydroxytryptophan (5-HTP), serotonin, and melatonin, hold significant promise as supplements for managing various mood-related disorders, including depression and insomnia. However, their chemical production via chemical synthesis and phytochemical extraction presents drawbacks, such as the generation of toxic byproducts and low yields. In this study, we explore an alternative approach utilizing S. cerevisiae STG S101 for biosynthesis. Through a series of eleven experiments employing different combinations of tryptophan supplementation, Tween 20, and HEPES buffer, we investigated the production of these indolamines. The tryptophan metabolites were analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Notably, setups replacing peptone in the YPD media with tryptophan (Run 3) and incorporating tryptophan along with 25 mM HEPES buffer (Run 4) demonstrated successful biosynthesis of 5-HTP and serotonin. The highest 5-HTP and serotonin concentrations were 58.9 ± 16.0 mg L-1 and 0.0650 ± 0.00211 mg L-1, respectively. Melatonin concentrations were undetected in all the setups. These findings underscore the potential of using probiotic yeast strains as a safer and conceivably more cost-effective alternative for indolamine synthesis. The utilization of probiotic strains presents a promising avenue, potentially offering scalability, sustainability, reduced environmental impact, and feasibility for large-scale production.


Asunto(s)
5-Hidroxitriptófano , Vías Biosintéticas , Saccharomyces cerevisiae , Serotonina , Triptófano , Triptófano/metabolismo , Saccharomyces cerevisiae/metabolismo , Serotonina/metabolismo , Serotonina/biosíntesis , 5-Hidroxitriptófano/metabolismo , Melatonina/metabolismo , Melatonina/biosíntesis , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos
9.
Int J Biol Macromol ; 264(Pt 1): 130609, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437933

RESUMEN

5-Hydroxytryptophan (5-HTP), as the precursor of serotonin and melatonin in animals, can regulate mood, sleep, and behavior, which is widely used in pharmaceutical and health products industry. The enzymatic production of 5-hydroxytryptophan (5-HTP) from L-tryptophan (L-Trp) using tryptophan hydroxylase (TPH) show huge potential in application due to its advantages, such as mild reaction conditions, avoidance of protection/deprotection processes, excellent regioselectivity and considerable catalytic efficiency, compared with chemical synthesis and natural extraction. However, the low thermostability of TPH restricted its hydroxylation efficiency toward L-Trp. In this study, we aimed to improve the thermostability of TPH via semi-rational design guided by (folding free energy) ΔΔG fold calculation. After two rounds of evolution, two beneficial mutants M1 (S422V) and M30 (V275L/I412K) were obtained. Thermostability evaluation showed that M1 and M30 possessed 5.66-fold and 6.32-fold half-lives (t1/2) at 37 °C, and 4.2 °C and 6.0 °C higher melting temperature (Tm) than the WT, respectively. The mechanism behind thermostability improvement was elucidated with molecular dynamics simulation. Furthermore, biotransformation of 5-HTP from L-Trp was performed, M1 and M30 displayed 1.80-fold and 2.30-fold than that of WT, respectively. This work provides important insights into the thermostability enhancement of TPH and generate key mutants that could be robust candidates for practical production of 5-HTP.


Asunto(s)
5-Hidroxitriptófano , Triptófano Hidroxilasa , Animales , 5-Hidroxitriptófano/metabolismo , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Triptófano/metabolismo , Serotonina/metabolismo , Ingeniería de Proteínas
10.
Aging (Albany NY) ; 16(5): 4889-4903, 2024 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462693

RESUMEN

Anthracycline chemotherapeutics like doxorubicin (DOX) are widely used against various cancers but are accompanied by severe cardiotoxic effects that can lead to heart failure. Through whole transcriptome sequencing and pathological tissue analysis in a murine model, our study has revealed that DOX impairs collagen expression in the early phase, causing extracellular matrix anomalies that weaken the mechanical integrity of the heart. This results in ventricular wall thinning and dilation, exacerbating cardiac dysfunction. In this work, we have identified 5-hydroxytryptophan (5-HTP) as a potent inhibitor of gap junction communication. This inhibition is key to limiting the spread of DOX-induced cardiotoxicity. Treatment with 5-HTP effectively countered the adverse effects of DOX on the heart, preserving ventricular structure and ejection fraction. Moreover, 5-HTP enhanced mitochondrial respiratory function, as shown by the O2k mitochondrial function assay, by improving mitochondrial complex activity and ATP production. Importantly, the cardioprotective benefits of 5-HTP did not interfere with DOX's ability to combat cancer. These findings shed light on the cardiotoxic mechanisms of DOX and suggest that 5-HTP could be a viable strategy to prevent heart damage during chemotherapy, offering a foundation for future clinical development. This research opens the door for 5-HTP to be considered a dual-purpose agent that can protect the heart without compromising the oncological efficacy of anthracycline chemotherapy.


Asunto(s)
Enfermedades Mitocondriales , Miocitos Cardíacos , Ratones , Animales , Miocitos Cardíacos/metabolismo , 5-Hidroxitriptófano/metabolismo , 5-Hidroxitriptófano/farmacología , Doxorrubicina/toxicidad , Antibióticos Antineoplásicos/farmacología , Cardiotoxicidad/patología , Enfermedades Mitocondriales/metabolismo , Apoptosis
11.
Hum Reprod ; 39(5): 912-922, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38498837

RESUMEN

STUDY QUESTION: What is the association between first trimester maternal tryptophan (TRP) metabolites and embryonic and fetal growth? SUMMARY ANSWER: Higher 5-hydroxytryptophan (5-HTP) concentrations are associated with reduced embryonic growth and fetal growth and with an increased risk of small-for-gestational age (SGA), while higher kynurenine (KYN) concentrations are associated with a reduced risk of SGA. WHAT IS KNOWN ALREADY: The maternal TRP metabolism is involved in many critical processes for embryonic and fetal growth, including immune modulation and regulation of vascular tone. Disturbances in TRP metabolism are associated with adverse maternal and fetal outcomes. STUDY DESIGN, SIZE, DURATION: This study was embedded within the Rotterdam Periconceptional Cohort (Predict Study), an ongoing prospective observational cohort conducted at a tertiary hospital from November 2010 onwards. PARTICIPANTS/MATERIALS, SETTING, METHODS: A total of 1115 women were included before 11 weeks of gestation between November 2010 and December 2020. Maternal serum samples were collected between 7 and 11 weeks of gestation, and TRP metabolites (TRP, KYN, 5-HTP, 5-hydroxytryptamine, and 5-hydroxyindoleacetic acid) were determined using a validated liquid chromatography (tandem) mass spectrometry method. Serial 3D ultrasound scans were performed at 7, 9, and 11 weeks of gestation to accurately assess features of embryonic growth, including crown-rump length (CRL) and embryonic volume (EV) offline using virtual reality systems. Fetal growth parameters were retrieved from medical records and standardized according to Dutch reference curves. Mixed models were used to assess associations between maternal TRP metabolites and CRL and EV trajectories. Linear and logistic regression models were utilized to investigate associations with estimated fetal weight (EFW) and birthweight, and with SGA, respectively. All analyses were adjusted for potential confounders. MAIN RESULTS AND THE ROLE OF CHANCE: Maternal 5-HTP concentrations and the maternal 5-HTP/TRP ratio were inversely associated with embryonic growth (5-HTP, √CRL: ß = -0.015, 95% CI = -0.028 to -0.001; 5-HTP 3√EV: ß = -0.009, 95% CI = -0.016 to -0.003). An increased maternal 5-HTP/TRP ratio was also associated with lower EFW and birthweight, and with an increased risk of SGA (odds ratio (OR) = 1.006, 95% CI = 1.00-1.013). In contrast, higher maternal KYN concentrations were associated with a reduced risk of SGA in the unadjusted models (OR = 0.548, 95% CI = 0.320-0.921). LIMITATIONS, REASONS FOR CAUTION: Residual confounding cannot be ruled out because of the observational design of this study. Moreover, this study was conducted in a single tertiary hospital, which assures high internal validity but may limit external validity. WIDER IMPLICATIONS OF THE FINDINGS: The novel finding that maternal 5-HTP concentrations are associated with a smaller embryo and fetus implies that disturbances of the maternal serotonin pathway in the first trimester of pregnancy are potentially involved in the pathophysiology of fetal growth restriction. The association between higher maternal KYN concentrations and a reduced risk of SGA substantiate the evidence that the KYN pathway has an important role in fetal growth. More research is needed to delve deeper into the potential role of the maternal TRP metabolism during the periconception period and pregnancy outcome for mother and offspring. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by the Department of Obstetrics and Gynecology and the Department of Clinical Chemistry of the Erasmus MC, University Medical Center, Rotterdam, the Netherlands. The authors have no competing interests to disclose. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Desarrollo Fetal , Quinurenina , Primer Trimestre del Embarazo , Triptófano , Humanos , Femenino , Embarazo , Triptófano/metabolismo , Triptófano/sangre , Adulto , Primer Trimestre del Embarazo/sangre , Estudios Prospectivos , Quinurenina/sangre , Quinurenina/metabolismo , Países Bajos , Desarrollo Embrionario , Recién Nacido Pequeño para la Edad Gestacional , Recién Nacido , 5-Hidroxitriptófano , Estudios de Cohortes , Ultrasonografía Prenatal , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/sangre
12.
Biomedicines ; 12(2)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38397959

RESUMEN

Serotonin (5-hydroxytryptamine, 5HT) homeostasis is essential for many physiological processes in the central nervous system and peripheral tissues. Hyperserotonemia, a measurable sign of 5HT homeostasis disruption, can be caused by 5HT-directed treatment of psychiatric and gastrointestinal diseases. Its impact on the long-term balance and function of 5HT in the peripheral compartment remains unresolved and requires further research due to possible effects on human health. We explored the effects of perinatal 5HT imbalance on the peripheral organs responsible for serotonin metabolism-the jejunum, a synthesis site, and the liver, a catabolism site-in adult rats. Hyperserotonemia was induced by subchronic treatment with serotonin precursor 5-hydroxytryptophan (5HTP) or serotonin degradation inhibitor tranylcypromine (TCP). The jejunum and liver were collected on postnatal day 70 and analyzed histomorphometrically. Relative mRNA levels of 5HT-regulating proteins were determined using qRT-PCR. Compared to controls, 5HTP- and TCP-treated rats had a reduced number of 5HT-producing cells and expression of the 5HT-synthesising enzyme in the jejunum, and an increased expression of 5HT-transporter accompanied by karyomegaly in hepatocytes, with these differences being more pronounced in the TCP-treated animals. Here, we report that perinatal 5HT disbalance induced long-term cellular and molecular changes in organs regulating 5HT-metabolism, which may have a negative impact on 5HT availability and function in the periphery. Our rat model demonstrates a link between the developmental abnormalities of serotonin homeostasis and 5HT-related changes in adult life and may be suitable for exploring the neurobiological substrates of vulnerability to behavioral and metabolic disorders, as well as for modeling the adverse effects of the prenatal exposure to 5HT enhancers in the human population.

13.
Clin Nutr ; 43(3): 593-602, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38309227

RESUMEN

BACKGROUND & AIMS: Sleep quality is a pivotal part of health and there is growing evidence on the association between gut microbiota composition and sleep quality. 5-Hydroxytryptophan (5-HTP) is known as a precursor of the sleep regulating neurotransmitter and hormone. However, efficacy of 5-HTP supplementation for improving sleep quality in older adults is unclear. Hence, the aim of this study is to assess the impact of 5-HTP supplementation on sleep quality and gut microbiota composition in older adults. METHODS: This is a single-blinded, 12-week parallel randomized controlled trial. Thirty older adults (66 ± 3 years) in Singapore were randomly assigned to either consume or not consume 100 mg 5-HTP daily. Every 4 weeks, sleep quality was assessed via both subjective (Pittsburg Sleep Quality Index) and objective (actigraphy watch) measures. A global sleep score (GSS) was obtained from the PSQI, where a GSS>5 defines as poor sleeper while a GSS≤5 defines as good sleeper. Blood serotonin level, urine melatonin concentration, gut microbiota composition and stool short chain fatty acids (SCFA) content were assessed at week 0 and 12. This study was registered in clinicaltrials.gov as NCT04078724 (https://clinicaltrials.gov/ct2/show/NCT04078724). RESULTS: 5-HTP supplementation showed an overall favorable effect on certain sleep quality components and an increase in serum serotonin concentration. In particular, at week 12, not good sleepers but poor sleepers with 5-HTP supplementation were able to significantly improve subjective GSS (ΔSL5-HTP: -2.80 ± 1.10 min, p-value = 0.005). In addition, they showed an increase in microbiota diversity (Simpson5-HTP vs. SimpsonControl: 0.037 ± 0.032 a.u. vs. -0.007 ± 0.022 a.u.; pinteraction: 0.013) and relative abundance of SCFA producing bacteria in the gut. CONCLUSIONS: 5-HTP supplementation can improve certain sleep quality components in older adults and this benefit was more prominently observed in poor sleepers. 5-HTP was also able to improve the gut microbiota composition in poor sleepers.


Asunto(s)
Microbioma Gastrointestinal , Calidad del Sueño , Humanos , Anciano , 5-Hidroxitriptófano , Serotonina , Suplementos Dietéticos
14.
Int J Biol Macromol ; 260(Pt 1): 129484, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242416

RESUMEN

L-Tryptophan hydroxylation catalyzed by tryptophan hydroxylase (TPH) presents a promising method for synthesizing 5-hydroxytryptophan (5-HTP), yet the limited activity of wild-type human TPH2 restricts its application. A high-activity mutant, MT10 (H318E/H323E), was developed through semi-rational active site saturation testing (CAST) of wild-type TPH2, exhibiting a 2.85-fold increase in kcat/Km over the wild type, thus enhancing catalytic efficiency. Two biotransformation systems were developed, including an in vitro one-pot system and a Whole-Cell Catalysis System (WCCS). In the WCCS, MT10 achieved a conversion rate of only 31.5 % within 32 h. In the one-pot reaction, MT10 converted 50 mM L-tryptophan to 44.5 mM 5-HTP within 8 h, achieving an 89 % conversion rate, outperforming the M1 (NΔ143/CΔ26) variant. Molecular dynamics simulations indicated enhanced interactions of MT10 with the substrate, suggesting improved binding affinity and system stability. This study offers an effective approach for the efficient production of 5-HTP.


Asunto(s)
5-Hidroxitriptófano , Triptófano Hidroxilasa , Humanos , 5-Hidroxitriptófano/metabolismo , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/química , Triptófano Hidroxilasa/metabolismo , Triptófano/química , Dominio Catalítico , Hidroxilación
15.
Exp Physiol ; 109(3): 365-379, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38064347

RESUMEN

Serotonin [5-hydroxytryptamine (5-HT)] modulates ovarian function. The precursor of 5-HT, 5-hydroxytryptophan (5-HTP), has been used to treat depression. However, the effects of 5-HTP on ovarian and reproductive physiology remain unknown. In this research, we analysed the impact of 5-HTP on the monoaminergic system and its interactions with the reproductive axis and ovarian estradiol secretion when administered by distinct routes. Female rats 30 days of age were injected with 5-HTP i.p. (100 mg/kg), into the ovarian bursa (1.5 µg/40 µL) or into the median raphe nucleus (20 µg/2.5 µL) and were killed 60 or 120 min after injection. As controls, we used rats of the same age injected with vehicle (0.9% NaCl). Monoamine, gonadotrophin and steroid ovarian hormone concentrations were measured. The injection of 5-HTP either i.p. or directly into the ovarian bursa increased the concentrations of 5-HT and the metabolite 5-hydroxyindole-3-acetic acid in the ovary. For both routes of administration, the serum concentration of estradiol increased. After i.p. injection of 5-HTP, the concentrations of luteinizing hormone were decreased and follicle-stimulating hormone increased after 120 min. Micro-injection of 5-HTP into the median raphe nucleus increased the concentrations of 5-HT in the anterior hypothalamus and dopamine in the medial hypothalamus after 120 min. Our results suggest that the administration of 5-HTP either i.p. or directly into the ovarian bursa enhances ovarian estradiol secretion.


Asunto(s)
5-Hidroxitriptófano , Serotonina , Femenino , Ratas , Animales , 5-Hidroxitriptófano/farmacología , 5-Hidroxitriptófano/metabolismo , Serotonina/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Ovario/metabolismo , Hipotálamo/metabolismo
16.
Talanta ; 270: 125565, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38154355

RESUMEN

Multi-walled carbon nanotubes, graphene and alizarin polymer composites coated carbon fiber microelectrode array sensor (p-AZ/MWCNT-GR/CFMEA) was constructed and used for the simultaneous detection of norepinephrine (NE) and 5-hydroxytryptophan (5-HT). The morphology and structural characteristics of sensor are characterized using scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Its electrochemical behavior has been studied with cyclic voltammetry and electrochemical impedance spectroscopy. The sensor exhibits excellent electrochemical activity for the oxidation of NE and 5-HT, two well separated oxidation peaks with the peak potential difference of 220 mV are observed on the cyclic voltammogram. NE and 5-HT both show two electrons and two protons electrochemical reaction on the p-AZ/MWCNT-GR/CFMEA. Under the optimized experiment conditions, the linear ranges of the sensor for NE and 5-HT are 0. 08- 8 µM and 0. 1-20 µM with detection limits of 4. 22 nM and 14. 2 nM (S/N = 3), respectively. In addition, the microsensor array show good reproducibility, stability and selectivity for the determination of NE and 5-HT. Finally, the p-AZ/MWCNT-GR/CFMEA is applied to the simultaneous detection of NE and 5-HT in human serum samples and macrophages.

17.
J Dairy Sci ; 107(5): 3306-3318, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38101740

RESUMEN

In dairy cows, the lactating mammary glands synthesize serotonin, which acts in an autocrine-paracrine manner in the glands and is secreted into the periphery. Serotonin signaling during lactation modulates nutrient metabolism in peripheral tissues such as adipose and liver. We hypothesized that the elevation of circulating serotonin during lactation would increase nutrient partitioning to the mammary glands, thereby promoting milk production. Our objective was to elevate circulating serotonin via intravenous infusion of the serotonin precursor 5-hydroxytryptophan (5-HTP) to determine its effects on mammary supply and extraction efficiency of AA, and milk components production. Twenty-two multiparous mid-lactation Holstein cows were intravenously infused with 5-HTP (1 mg/kg body weight) or saline, in a crossover design with two 21-d periods. Treatments were infused via jugular catheters for 1 h/d, on d 1 to 3, 8 to 10, and 15 to 17 of each period, to maintain consistent elevation of peripheral serotonin throughout the period. Milk and blood samples were collected in the last 96 h of each period. Whole-blood serotonin concentration was elevated above saline control for 96 h after the last 5-HTP infusion. Dry matter intake was decreased for cows receiving 5-HTP, and on average they lost body weight over the 21-d period, in contrast to saline cows who gained body weight. Milk production and milk protein yield were lower in cows receiving 5-HTP during the 3 infusion days, but both recovered to saline cow yields in the days after. Although milk fat yield exhibited a day-by-treatment interaction, no significant difference occurred on any given day. Milk urea nitrogen concentration was lower in 5-HTP cows on the days following the end of infusions, but not different from saline cows on infusion days. Meanwhile, plasma urea nitrogen was not affected by 5-HTP infusion. Circulating concentrations of AA were overall transiently decreased by 5-HTP, with concentrations mostly returning to baseline within 7 h after the end of 5-HTP infusion. Mammary extraction efficiency of AA was unaffected by 5-HTP infusion. Overall, both lactation performance and circulating AA were transiently reduced in cows infused with 5-HTP, despite sustained elevation of circulating serotonin concentration.


Asunto(s)
5-Hidroxitriptófano , Lactancia , Animales , Bovinos , Femenino , Aminoácidos/metabolismo , Peso Corporal , Dieta/veterinaria , Infusiones Intravenosas/veterinaria , Proteínas de la Leche , Serotonina , Urea/análisis
18.
J Microbiol ; 61(12): 1033-1041, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38117463

RESUMEN

Escherichia coli RclA and Staphylococcus aureus MerA are part of the Group I flavoprotein disulfide reductase (FDR) family and have been implicated in the contribution to bacterial pathogenesis by defending against the host immune response. Fusobacterium nucleatum is a pathogenic, anaerobic Gram-negative bacterial species commonly found in the human oral cavity and gastrointestinal tract. In this study, we discovered that the F. nucleatum protein FN0820, belonging to the Group I FDR family, exhibited a higher activity of a Cu2+-dependent NADH oxidase than E. coli RclA. Moreover, FN0820 decreased the dissolved oxygen level in the solution with higher NADH oxidase activity. We found that L-tryptophan and its analog 5-hydroxytryptophan inhibit the FN0820 activities of NADH oxidase and the concomitant reduction of oxygen. Our results have implications for developing new treatment strategies against pathogens that defend the host immune response with Group I FDRs.


Asunto(s)
Escherichia coli , Fusobacterium nucleatum , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Bacterias/metabolismo , Boca , Flavoproteínas/química , Flavoproteínas/metabolismo
19.
Vet Med Sci ; 9(6): 2438-2442, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37659074

RESUMEN

OBJECTIVE: To describe a case of 5-hydroxytryptophan (5-HTP) toxicity successfully treated with haemodialysis in a dog. CASE SUMMARY: A 3-year-old, male neutered Labrador Retriever, weighing 28.2 kg, presented to the emergency department approximately 4-5 h after ingesting a human supplement containing 200 mg of 5-HTP. The amount of 5-HTP ingested was estimated between 980 and 1988 mg (35-71 mg/kg). At presentation, the dog demonstrated progressive neurologic abnormalities consistent with serotonin syndrome, including altered mentation and ataxia. Due to the magnitude of the ingested dose and progression of clinical signs, extracorporeal blood purification with intermittent haemodialysis was chosen to expedite clearance of 5-HTP. High-efficiency haemodialysis was initiated, and the dog showed continued clinical improvement throughout the 5-h treatment. Clinical signs resolved completely within 12 h. Sequential blood and urine samples were obtained to document levels of both 5-HTP and serotonin. The dog was discharged 24 h after presentation with complete resolution of clinical signs. NEW OR UNIQUE INFORMATION: This is the first report documenting the serial changes in 5-HTP concentrations during treatment with haemodialysis.


Asunto(s)
5-Hidroxitriptófano , Serotonina , Perros , Masculino , Humanos , Animales , Serotonina/orina , Diálisis Renal/veterinaria
20.
Appl Microbiol Biotechnol ; 107(15): 4717-4725, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37326681

RESUMEN

Serotonin, as a monoamine neurotransmitter, modulates the activity of the nervous system. Due to its importance in the coordination of movement and regulation of mood, impairments in the synthesis and homeostasis of serotonin are involved in numerous disorders, including depression, Parkinson's disease, and anxiety. Currently, serotonin is primarily obtained via natural extraction. But this method is time-consuming and low yield, as well as unstable supply of raw materials. With the development of synthetic biology, researchers have established the method of microbial synthesis of serotonin. Compared with natural extraction, microbial synthesis has the advantages of short production cycle, continuous production, not limited by season and source, and environment-friendly; hence, it has garnered considerable research attention. However, the yield of serotonin is still too low to industrialization. Therefore, this review provides the latest progress and examples that illustrate the synthesis pathways of serotonin as well as proposes strategies for increasing the production of serotonin. KEY POINTS: • Two biosynthesis pathways of serotonin are introduced. • L-tryptophan hydroxylation is the rate-limiting step in serotonin biosynthesis. • Effective strategies are proposed to improve serotonin production.


Asunto(s)
Serotonina , Triptófano Hidroxilasa , Serotonina/metabolismo , Triptófano Hidroxilasa/metabolismo , Triptófano/metabolismo , Hidroxilación , Neurotransmisores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA