Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmacol Res ; 179: 106208, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398239

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells which are immunosuppressive and glycolytically inactive in inflammatory diseases. However, it is unknown whether MDSCs contribute to ischemic stroke and how glycolysis regulates MDSC function in such a context. Here, we showed that MDSCs arise in the blood of patients at early phase of stroke. Similar results were observed in temporary middle cerebral artery occlusion-induced cerebral ischemic mice. Pharmaceutical exhaustion of MDSCs aggravated, while adoptive transfer of MDSCs rescued the ischemic brain injury. However, the differentiation of MDSCs into immunopotent myeloid cells which coincides with increased glycolysis was observed in the context of ischemic stroke. Mechanistically, the glycolytic product lactate autonomously induces MDSC differentiation through activation of mTORC1, and paracrinely activates Th1 and Th17 cells. Moreover, gene knockout or inhibition of the glycolytic enzyme PFKFB3 increased endogenous MDSCs by blocking their differentiation, and improved ischemic brain injury. Collectively, these results revealed that glycolytic switch decreases the immunosuppressive and neuroprotective role of MDSCs in ischemic stroke and pharmacological targeting MDSCs via glycolysis inhibition constitutes a promising therapeutic strategy for ischemic stroke.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular Isquémico , Células Supresoras de Origen Mieloide , Animales , Glucólisis , Humanos , Inmunosupresores , Ratones , Ratones Endogámicos C57BL
2.
Pharmacol Res ; 167: 105544, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33722711

RESUMEN

Cancer is one of the major global health problems, responsible for the second-highest number of deaths. The genetic and epigenetic changes in the oncogenes or tumor suppressor genes alter the regulatory pathways leading to its onset and progression. Conventional methods are used in appropriate combinations for the treatment. Surgery effectively treats localized tumors; however, it fails to treat metastatic tumors, leading to a spread in other organs, causing a high recurrence rate and death. Among the different strategies, the nanocarriers-based approach is highly sought for, but its nonspecific delivery can cause a profound side effect on healthy cells. Targeted nanomedicine has the advantage of targeting cancer cells specifically by interacting with the receptors overexpressed on their surface, overcoming its non-specificity to target healthy cells. Nanocarriers prepared from biodegradable and biocompatible materials are decorated with different ligands by encapsulating therapeutic or diagnostic agents or both to target cancer cells overexpressing the receptors. Scientists are now utilizing a theranostic approach to simultaneously evaluate nanocarrier bio-distribution and its effect on the treatment regime. Herein, we have summarized the recent 5-year efforts in the development of the ligands decorated biodegradable nanocarriers, as a targeted nanomedicine approach, which has been highly promising in the treatment of cancer.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Nanoestructuras/química , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Humanos , Ligandos , Nanomedicina/métodos
3.
Pharmacol Res ; 132: 47-68, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29604436

RESUMEN

In women, breast cancer is the most common cancer diagnosis and second most common cause of cancer death. More than half of breast cancer patients will develop metastases to the bone, liver, lung, or brain. Breast cancer brain metastases (BCBM) confers a poor prognosis, as current therapeutic options of surgery, radiation, and chemotherapy rarely significantly extend life and are considered palliative. Within the realm of chemotherapy, the last decade has seen an explosion of novel chemotherapeutics involving targeting agents and unique dosage forms. We provide a historical overview of BCBM chemotherapy, review the mechanisms of new agents such as poly-ADP ribose polymerase inhibitors, cyclin-dependent kinase 4/6 inhibitors, phosphatidyl inositol 3-kinaseinhibitors, estrogen pathway antagonists for hormone-receptor positive BCBM; tyrosine kinase inhibitors, antibodies, and conjugates for HER2+ BCBM; repurposed cytotoxic chemotherapy for triple negative BCBM; and the utilization of these new agents and formulations in ongoing clinical trials. The mechanisms of novel dosage formulations such as nanoparticles, liposomes, pegylation, the concepts of enhanced permeation and retention, and drugs utilizing these concepts involved in clinical trials are also discussed. These new treatments provide a promising outlook in the treatment of BCBM.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Sistemas de Liberación de Medicamentos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA