Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Animals (Basel) ; 13(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37760307

RESUMEN

Animal welfare is a subject of increasing scientific and ethical concern in today's society, crucial for the well-being of animals used in research and the integrity of scientific data. Equipping researchers in the life science disciplines with a science-based knowledge of animal welfare, behaviour, physiology, and health is, therefore, essential. Nevertheless, previous studies evaluating animal welfare education focused on veterinary, laboratory, or farm animal science. Consequently, the aim of this study was, for the very first time, to map the prevalence of animal welfare courses in the university education of ecologists, wildlife biologists, and conservation managers in Europe, Canada, the USA, Australia, and New Zealand. A comprehensive assessment of 1548 universities was conducted, resulting in the identification of 596 relevant programs at the bachelor's and master's levels. Analysis of the curricula revealed that only 1% of the programs offered a formal course on animal welfare, while 65% provided courses on animal behaviour, 59% on animal physiology, and 34% on animal health. However, the majority of these courses were listed as electives rather than mandatory components of the programs. These results underscore the need for universities to incorporate more formal and obligatory education in animal welfare in order to better prepare future ecologists, wildlife biologists, and conservation managers for the challenges of working with wildlife.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37491113

RESUMEN

Many fungal genera such as Aspergillus, Penicillium, Fusarium and Alternaria are able to produce, among many other metabolites, the aflatoxins, a group of toxic and carcinogenic compounds. To reduce their formation, synthetic fungicides are used as an effective way of intervention. However, the extensive use of such molecules generates long-term residues into the food and the environment. The need of new antifungal molecules, with high specificity and low off-target toxicity is worth. The aim of this study was to evaluate: i) the toxicity and genotoxicity of newly synthesized molecules with a good anti-mycotoxic activity, and ii) the suitability of the Allium cepa multi-endpoint assay as an early screening method for chemicals. Eight compounds were tested for toxicity by using the A. cepa bulb root elongation test and for genotoxicity using the A. cepa bulb mitotic index, micronuclei and chromosome aberrations tests. Three molecules showed no toxicity, while two induced mild toxic effects in roots exposed to the highest dose (100 µM). A more pronounced toxic effect was caused by the other three compounds for which the EC50 was approximately 50 µM. Furthermore, all molecules showed a clear genotoxic activity, both in terms of chromosomal aberrations and micronuclei. Albeit the known good antifungal activity, the different molecules caused strong toxic and genotoxic effects. The results indicate the suitability of experiments with A. cepa as a research model for the evaluation of the toxic and genotoxic activities of new molecules in plants before they are released into the environment.


Asunto(s)
Allium , Cebollas , Antifúngicos/toxicidad , Raíces de Plantas , Índice Mitótico , Aberraciones Cromosómicas , Daño del ADN
3.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1030706

RESUMEN

In recent years, with the rapid development of life sciences, the use of laboratory fish in toxicology, genetics, developmental biology and medicine has increased dramatically, and they have gradually become important new model organisms. At the same time, the welfare of laboratory fish has also received increasing attention. Although the research level of experimental fish welfare is still in a relatively early stage compared to terrestrial experimental animals, developed regions such as Europe and America have established corresponding legal frameworks to safeguard the welfare of laboratory fish in research. This article elucidates the current developmental status of laboratory fish welfare, discusses the rationale behind the imperative to prioritize and enhance their welfare, deeply investigates factors influencing their welfare from the feeding stage and experimental stage. Moreover, it explores strategies for augmenting welfare standards, with the overarching aim of propelling the continual improvement of laboratory fish welfare in our country.

4.
Cells ; 11(10)2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35626736

RESUMEN

The necessity to improve in vitro cell screening assays is becoming ever more important. Pharmaceutical companies, research laboratories and hospitals require technologies that help to speed up conventional screening and therapeutic procedures to produce more data in a short time in a realistic and reliable manner. The design of new solutions for test biomaterials and active molecules is one of the urgent problems of preclinical screening and the limited correlation between in vitro and in vivo data remains one of the major issues. The establishment of the most suitable in vitro model provides reduction in times, costs and, last but not least, in the number of animal experiments as recommended by the 3Rs (replace, reduce, refine) ethical guiding principles for testing involving animals. Although two-dimensional (2D) traditional cell screening assays are generally cheap and practical to manage, they have strong limitations, as cells, within the transition from the three-dimensional (3D) in vivo to the 2D in vitro growth conditions, do not properly mimic the real morphologies and physiology of their native tissues. In the study of human pathologies, especially, animal experiments provide data closer to what happens in the target organ or apparatus, but they imply slow and costly procedures and they generally do not fully accomplish the 3Rs recommendations, i.e., the amount of laboratory animals and the stress that they undergo must be minimized. Microfluidic devices seem to offer different advantages in relation to the mentioned issues. This review aims to describe the critical issues connected with the conventional cells culture and screening procedures, showing what happens in the in vivo physiological micro and nano environment also from a physical point of view. During the discussion, some microfluidic tools and their components are described to explain how these devices can circumvent the actual limitations described in the introduction.


Asunto(s)
Dispositivos Laboratorio en un Chip , Microfluídica , Animales , Materiales Biocompatibles , Técnicas de Cultivo de Célula/métodos , Microfluídica/métodos
5.
Toxins (Basel) ; 14(1)2022 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-35051008

RESUMEN

BACKGROUND: Ensuring consistency of tetanus neurotoxin (TeNT) production by Clostridium tetani could help to ensure consistent product quality in tetanus vaccine manufacturing, ultimately contributing to reduced animal testing. The aim of this study was to identify RNA signatures related to consistent TeNT production using standard and non-standard culture conditions. METHODS: We applied RNA sequencing (RNA-Seq) to study C. tetani gene expression in small-scale batches under several culture conditions. RESULTS: We identified 1381 time-dependent differentially expressed genes (DEGs) reflecting, among others, changes in growth rate and metabolism. Comparing non-standard versus standard culture conditions identified 82 condition-dependent DEGs, most of which were specific for one condition. The tetanus neurotoxin gene (tetX) was highly expressed but showed expression changes over time and between culture conditions. The tetX gene showed significant down-regulation at higher pH levels (pH 7.8), which was confirmed by the quantification data obtained with the recently validated targeted LC-MS/MS approach. CONCLUSIONS: Non-standard culture conditions lead to different gene expression responses. The tetX gene appears to be the best transcriptional biomarker for monitoring TeNT production as part of batch-to-batch consistency testing during tetanus vaccine manufacturing.


Asunto(s)
Clostridium tetani/genética , Clostridium tetani/metabolismo , Neurotoxinas/biosíntesis , Neurotoxinas/genética , Toxoide Tetánico/biosíntesis , Toxoide Tetánico/normas , Secuencia de Bases , Células Cultivadas , Regulación Bacteriana de la Expresión Génica
6.
Talanta ; 236: 122883, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34635263

RESUMEN

The tetanus neurotoxin (TeNT) is one of the most toxic proteins known to man, which prior to the use of the vaccine against the TeNT producing bacteria Clostridium tetani, resulted in a 20% mortality rate upon infection. The clinical detrimental effects of tetanus have decreased immensely since the introduction of global vaccination programs, which depend on sustainable vaccine production. One of the major critical points in the manufacturing of these vaccines is the stable and reproducible production of high levels of toxin by the bacterial seed strains. In order to minimize time loss, the amount of TeNT is often monitored during and at the end of the bacterial culturing. The different methods that are currently available to assess the amount of TeNT in the bacterial medium suffer from variability, lack of sensitivity, and/or require specific antibodies. In accordance with the consistency approach and the three Rs (3Rs), both aiming to reduce the use of animals for testing, in-process monitoring of TeNT production could benefit from animal and antibody-free analytical tools. In this paper, we describe the development and validation of a new and reliable antibody free targeted LC-MS/MS method that is able to identify and quantify the amount of TeNT present in the bacterial medium during the different production time points up to the harvesting of the TeNT just prior to further upstream purification and detoxification. The quantitation method, validated according to ICH guidelines and by the application of the total error approach, was utilized to assess the amount of TeNT present in the cell culture medium of two TeNT production batches during different steps in the vaccine production process prior to the generation of the toxoid. The amount of TeNT generated under different physical stress conditions applied during bacterial culture was also monitored.


Asunto(s)
Espectrometría de Masas en Tándem , Toxina Tetánica , Técnicas Bacteriológicas , Cromatografía Liquida , Metaloendopeptidasas , Toxina Tetánica/análisis
7.
Cancers (Basel) ; 13(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34439163

RESUMEN

Assessment of biodistribution and specific tumor accumulation is essential for the development of new radiopharmaceuticals and requires animal experiments. The HET-CAM (hens-egg test-chorioallantoic membrane) model can be used in combination with the non-invasive imaging modalities PET and MRI for pre-selection during radiopharmaceutical development to reduce the number of animal experiments required. Critical to the acceptance of this model is the demonstration of the quantifiability and reproducibility of these data compared to the standard animal model. Tumor accumulation and biodistribution of the PSMA-specific radiotracer [18F]F-siPSMA-14 was analyzed in the chick embryo and in an immunodeficient mouse model. Evaluation was based on MRI and PET data in both models. γ-counter measurements and histopathological analyses complemented these data. PSMA-specific accumulation of [18F]F-siPSMA-14 was successfully demonstrated in the HET-CAM model, similar to the results obtained by mouse model studies. The combination of MR and PET imaging allowed precise quantification of peptide accumulation, initial assessment of biodistribution, and accurate determination of tumor volume. Thus, the use of the HET-CAM model is suitable for the pre-selection of new radiopharmaceuticals and potentially reduces animal testing in line with the 3Rs principles of animal welfare.

9.
Res Vet Sci ; 122: 56-63, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30458355

RESUMEN

Microtubules play a crucial role during neuronal morphogenesis regulating many functions. In the study of these phenomena in vitro cellular models have been employed, mainly resorting to housed experimental animals. Among alternative models in neurobiological study, recently dog caught particular attention. In fact, the complexity of the canine brain, the life long span and the neurodegenerative pathologies render the dog a species more close to humans than rodents. Lately, growing interest in the limitation of the use of experimental animals, has stimulated the search for alternative experimental protocols. Starting from fetal dog brain, obtained by alternative way of sampling, we set neuronal primary cultures. Through immunofluorescence, we examined the presence and the cellular distribution of tubulin post-translational modifications as tyrosinated and acetylated α-tubulin, as markers of dynamic and stable microtubule respectively. In addition, we evaluated the pattern of two associated proteins which may slide on these two tubulin modifications, i.e. CLIP-170 and Kinesin-1. A clear positivity for tyrosinated and acetylated α-tubulin, was found. As far as the motor proteins are concerned, we detected a prevalence of CLIP-170 compared to kinesin-1 with a better overlapping between tyrosinated α-tubulin and CLIP-170. Our findings highlighted some original data about the role of the microtubular network during early phases of canine neuronal morphogenesis. In addition, the experimental protocol underlined the utility of this alternative model that allows to bypass both the scarcity of commercial canine neuronal cell lines and the need to resort to experimental dogs, respecting the 3Rs principles (reduction, refinement, and replacement).


Asunto(s)
Procesamiento Proteico-Postraduccional/fisiología , Tubulina (Proteína)/metabolismo , Acetilación , Animales , Línea Celular , Perros , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Microtúbulos , Neuronas/metabolismo , Tubulina (Proteína)/genética
10.
Interdiscip Toxicol ; 11(1): 5-12, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-30181707

RESUMEN

Safety assessment of chemicals, pharmaceuticals, food and food ingredients, cosmetics, industrial products is very crucial prior to their approval for human uses. Since the commencement of toxicity testing (about 500 years ago, since 1520), significant advances have been made with respect to the 3Rs (reduction, refinement and replacement) alternative approaches. This review is focused on the update in acute systemic toxicity testing of chemicals. Merits and demerits of these advances were also highlighted. Traditional LD50 test methods are being suspended while new methods are developed and endorsed by the regulatory body. Based on the refinement and reduction approaches, the regulatory body has approved fixed dose procedure (FDP), acute toxic class (ATC) method and up and down procedure (UDP) which involves few numbers of animals. In terms of replacement approach, the regulatory body approved 3T3 neutral red uptake (NRU), the normal human keratinocyte (NHK), and the 3T3 neutral red uptake (NRU) phototoxicity test for acute phototoxicity. However, other promising replacement alternatives such as organ on chip seeded with human cells for acute systemic toxicity and 3T3 neutral red uptake (NRU) cytotoxicity test for identifying substances not requiring classification, as well as the in silico approaches are yet to receive regulatory approval. With this backdrop, a collaborative effort is required from the academia, industries, regulatory agencies, government and scientific organizations to ensure speedily regulatory approval of the prospective alternatives highlighted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA