Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(35): 46937-46944, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39163249

RESUMEN

Precise micropatterning on three-dimensional (3D) surfaces is desired for a variety of applications, from microelectronics to metamaterials, which can be realized by transfer printing techniques. However, a nontrivial deficiency of this approach is that the transferred microstructures are adsorbed on the target surface with weak adhesion, limiting the applications to external force-free conditions. We propose a scalable "photolithography-transfer-plating" method to pattern stable and durable microstructures on 3D metallic surfaces with precise dimension and location control of the micropatterns. Surface patterning on metallic parts with different metals and isotropic and anisotropic curvatures is showcased. This method can also fabricate hierarchical structures with nanoscale vertical and microscale horizontal dimensions. The plated patterns are stable enough to mold soft materials, and the structure durability is validated by 24 h thermofluidic tests. We demonstrate micropatterned nickel electrodes for oxygen evolution reaction acceleration in hydrogen production, showing the potential of micropatterned 3D metallic surfaces for energy applications.

2.
Adv Mater ; 35(48): e2304461, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37658732

RESUMEN

Self-assembly, the spontaneous ordering of components into patterns, is widespread in nature and fundamental to generating function across length scales. Morphogen gradients in biological development are paradigmatic as both products and effectors of self-assembly and various attempts have been made to reproduce such gradients in biomaterial design. To date, approaches have typically utilized top-down fabrication techniques that, while allowing high-resolution control, are limited by scale and require chemical cross-linking steps to stabilize morphogen patterns in time. Here, a bottom-up approach to protein patterning is developed based on a novel binary reaction-diffusion process where proteins function as diffusive reactants to assemble a nanoclay-protein composite hydrogel. Using this approach, it is possible to generate scalable and highly stable 3D patterns of target proteins down to sub-cellular resolution through only physical interactions between clay nanoparticles and the proteins and ions present in blood. Patterned nanoclay gels are able to guide cell behavior to precisely template bone tissue formation in vivo. These results demonstrate the feasibility of stabilizing 3D gradients of biological signals through self-assembly processes and open up new possibilities for morphogen-based therapeutic strategies and models of biological development and repair.


Asunto(s)
Nanopartículas , Hidrogeles , Arcilla
3.
ACS Appl Mater Interfaces ; 13(20): 23339-23351, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33974396

RESUMEN

Developing strategies to prevent bacterial infections that do not rely on the use of drugs is regarded globally as an important means to stem the tide of antimicrobial resistance, as argued by the World Health Organization (WHO) (Mendelson, M.; Matsoso, M. P. The World Health Organization Global Action Plan for Antimicrobial Resistance. S. Afr. Med. J. 2015, 105 (5), 325-325. DOI: 10.7196/SAMJ.9644). Given that many antimicrobial-resistant infections are caused by the bacterial colonization of indwelling medical devices such as catheters and ventilators, the use of microengineered surfaces to prevent the initial attachment of microbes to these devices is a promising solution. In this work, it is demonstrated that 3D engineered surfaces can inhibit the initial phases of surface colonization for Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, representing the three most common catheter-associated urinary tract bacterial infections, identified by the WHO as urgent threats. A variety of designs including 11 different topographies and configurations that exhibited random distributions, sharp protrusions, and/or curvilinear shapes with dimensions ranging between 500 nm and 2 µm were tested to better understand the initial stages of surface colonization and how to optimize the design of fabricated surfaces for improved inhibition. These topographies were fabricated in two configurations to obtain either a standard 2D cross section or a 3D engineered topography using a novel UV lithography process enabling cost-efficient high-throughput manufacturing. Evaluating both the number of adhered bacteria and microcolonies formed by all three bacterial pathogens on the different surfaces provides insight into the initial colonization phase of bacterial growth on the various surfaces. The results demonstrate that both initial attachment and subsequent colonization can be significantly reduced on concrete 3D engineered patterns when compared to flat substrates and standard 2D micropatterns. Thus, this technology has great potential to reduce the colonization of bacteria on surfaces in clinical settings without the need for chemical treatments that might enhance antimicrobial resistance.


Asunto(s)
Bacterias , Adhesión Bacteriana/fisiología , Diseño de Equipo/métodos , Impresión Tridimensional , Propiedades de Superficie , Antibacterianos/farmacología , Bacterias/citología , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Biopelículas , Incrustaciones Biológicas , Farmacorresistencia Bacteriana , Equipos y Suministros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA