Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 44(9): 5025-5035, 2023 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-37699820

RESUMEN

The nutrient release characteristics of four types of composts, pure municipal sewage sludge compost, corn straw biochar (CSB) improved compost, effective microorganism agent (EM) improved compost, and CSB+EM improved compost, in coastal wetland soil were examined through a soil incubation experiment. The effects of different composts on the spectral characteristics of soil dissolved organic matter (DOM) and microbial community were also investigated. The results demonstrated that the compost additions could significantly reduce soil pH, while increasing soil electrical conductivity and contents of plant available nutrients (e.g., dissolved organic carbon, NH4+-N, NO3--N, available phosphorus, and available potassium). By comparing the nutrient release potential among the improved composts, the CSB+EM-improved compost (CSB+EM-C) evidently had the highest nutrient release potential. Furthermore, the DOM in CSB+EM-C amended soil exhibited a higher humification degree than that of the other composts. The high-throughput sequencing results indicated that the compost additions increased the relative abundances of dominant bacteria at the phylum level, such as the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. CSB+EM-C exhibited a greater potential to improve the relative abundance of these dominant bacteria phyla than other improved composts. Overall, among all the improvement approaches, the combined use of CSB and EM agent was the optimal composting strategy owing to its highest potentials of nutrient supply and soil quality improvement. The present findings can provide a solid scientific theoretical basis for establishing an effective technology strategy involving the combination of municipal sewage sludge utilization and degraded coastal wetland soil remediation.


Asunto(s)
Compostaje , Aguas del Alcantarillado , Materia Orgánica Disuelta , Nutrientes , Suelo
2.
Sci Total Environ ; 855: 158963, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36155043

RESUMEN

Three-dimensional excitation-emission matrix fluorescence spectroscopy (3D EEMs) has been extensively used for dissolved organic matter (DOM) characterization. However, the application of 3D EEMs is constantly limited by issues such as contradictory component identification, confusing interpretation of spectral indicators, and inability to establish biodegradability. In this study, some improvements were proposed by investigating the 3D EEMs, spectral indicators, and degradability of the standard and representative DOM. To overcome the unclear identification of DOM components, it was recommended to partition 3D EEMs into three subareas: aromatic protein (New-I), humic-like (New-II), and soluble microbial by-product-like (New-III). Significant strong positive correlations (ρ = 0.727, P < 0.001) were observed between fluorescence index (FI) and biological index (BIX), and (R = 0.809, P < 0.001) humification index (HIX) and specific ultraviolet absorbance of 254 nm (SUVA254). Except for FI (R = -0.483, P = 0.023), no other spectral indicators (P > 0.05) were found to be significantly correlated with molecular weight. As thence results, the FI and HIX were the most suitable indicators for evaluating DOM. The half-life (20 < 21 < 26 < 29 < 46 days) revealed that the degradability of individual DOM components was in the order of tyrosine > tryptophan > fulvic acid > protein > humic acid. The degradation dynamics were governed by first-order decay kinetics (R2 = 0.91-0.99). This study clarified the fluorescence properties and degradability of DOM, as well as the reliability of spectral indicators. The degradation performance of individual DOM components engaged in the carbon cycling process was revealed, paving the path for further applications of 3D EEMs in DOM research.


Asunto(s)
Materia Orgánica Disuelta , Sustancias Húmicas , Espectrometría de Fluorescencia/métodos , Reproducibilidad de los Resultados , Sustancias Húmicas/análisis
3.
Huan Jing Ke Xue ; 43(2): 847-858, 2022 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-35075858

RESUMEN

At present, there are few studies on the spectral characteristics of dissolved organic matter (DOM) in the sediments of the Poyang Lake basin. Therefore, excitation-emission matrix spectroscopy (EEMs) technology and ultraviolet-visible spectra combined with the parallel factor analysis (PARAFAC) were applied to investigate the fluorescent components and sources of DOM in sediments from Poyang Lake. The results showed that the DOM in sediments originated from both terrestrial and autochthonous sources with a high humification. Compared with the sub-lakes, the DOM from the main lake was characterized with a higher concentration of colored DOM, larger particle size, and higher aromaticity and humification degree. In addition, four fluorescence components of DOM in sediments were identified by the PARAFAC model, including three humic-like components (C1, C2, and C4) and one protein-like component (C3). The fluorescence intensity of the humic substances in the sub-lakes was higher than those in the main lake. Furthermore, the percentage of fluorescence abundance of C1 was the highest both in the sub-lakes (42%) and main lake (46%). The spatial distribution of the fluorescence intensity of the four components gradually increased from west to east, and the peak values were observed in the Duchang and Nanji Wetland. This may be related to the death of a large number of plants due to the rise in the water level during the wet season and human activities. Principal component analysis showed that although there were no significant differences in the four fluorescent components between the sub-lakes and the main lake, the humification degree of DOM in the sub-lakes was slightly higher than that in the main lake.


Asunto(s)
Lagos , Calidad del Agua , Materia Orgánica Disuelta , Análisis Factorial , Humanos , Sustancias Húmicas/análisis , Lagos/análisis , Espectrometría de Fluorescencia
4.
J Colloid Interface Sci ; 606(Pt 1): 898-911, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34481249

RESUMEN

Developing photocatalysts that are inexpensive and efficient in degrading pollutants are essential for environmental remediation. Herein, a novel system of perylene diimide (PDI)/CuS p-n heterojunction was synthesized by a two-step self-assembly strategy for removal of tetracycline in waste water. Results showed that PDI/CuS-10% exhibited highest photocatalytic behavior. The apparent rate constants for tetracycline (TC) degradation for the blend were 5.27 and 2.68 times higher than that of CuS or PDI, respectively. The enhancement of photocatalytic activity was mainly attributed to the π-π stacking and p-n junction, which can accelerate the separation of the photo-generated h+-e- pairs. Besides, the light absorption of PDI/CuS from 800 to 200 nm was significantly enhanced and the absorption edge even reached the near-infrared region, which also played an important role in providing desired photocatalytic properties. Surprisingly, PDI/CuS could maintain high catalytic activity even after 5 cycles under simulated conditions, indicating that the composite had high potential for practical applications. Owing to high efficiency, low cost and wide application range, the PDI/CuS nanocomposites are promising candidates for environmental remediation.


Asunto(s)
Restauración y Remediación Ambiental , Perileno , Cobre , Luz
5.
J Environ Sci (China) ; 113: 281-290, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34963537

RESUMEN

As the biggest inter-basin water transfer scheme in the world, the South-to-North Water Diversion Project (SNWD) was designed to alleviate the water crisis in North China. The main channel of the middle route of the SNWD is of great concern in terms of the drinking water quality. In this study, we tested the hypothesis that the dissolved organic matter (DOM) derived from the planktonic algae causes the rising levels of CODMn along the middle route by monitoring data on water quality (2015-2019, monthly resolution). The results showed that algal density in the main channel increased along the channel and was significantly correlated with CODMn (p < 0.01). Five fluorescent components of DOM, including tyrosine-like (14.85%), tryptophan-like (22.48%), microbial byproduct-like (26.34%), fulvic acid-like (11.41%), and humic acid-like (24.92%) components, were detected. The level of tyrosine-like components increased along the channel and was significantly correlated with algal density (p<0.01), indicating that algae significantly changed the level of DOM in the channel. Algal decomposition and metabolism were found to be the main mechanisms that drive the changes in CODMn. Therefore, controlling algal density would be an important measure to prevent further increase in CODMn and for the guarantee of excellent water quality.


Asunto(s)
Materia Orgánica Disuelta , Calidad del Agua , China , Sustancias Húmicas , Plancton , Plantas , Espectrometría de Fluorescencia
6.
Sci Total Environ ; 637-638: 1311-1320, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29801223

RESUMEN

Characterization of natural colloids is the key to understand pollutant fate and transport in the environment. The present study investigates the relationship between size and fluorescence properties of colloidal organic matter (COM) from five tributaries of Poyang Lake. Colloids were size-fractionated using cross-flow ultrafiltration and their fluorescence properties were measured by three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM). Parallel factor analysis (PARAFAC) and/or Self-organizing map (SOM) were applied to assess fluorescence properties as proxy indicators for the different size of colloids. PARAFAC analysis identified four fluorescence components including three humic-like components (C1-C3) and a protein-like component (C4). These four fluorescence components, and in particular the protein-like component, are primarily present in <1 kDa phase. For the colloidal fractions (1-10 kDa, 10-100 kDa, and 100 kDa-0.7 µm), the majority of fluorophores are associated with the smallest size fraction. SOM analysis demonstrated that relatively high fluorescence intensity and aromaticity occur primarily in <1 kDa phase, followed by 1-10 kDa colloids. Coupling PARAFAC and SOM facilitate the visualization and interpretation of the relationship between colloidal size and fluorescence properties with fewer input variables, shorter running time, higher reliability, and nondestructive results. Fluorescence indices analysis reveals that the smallest colloidal fraction (1-10 kDa) was dominated by higher humified and less autochthonous COM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA