Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
SAR QSAR Environ Res ; 35(7): 531-563, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39077983

RESUMEN

The 3C-like Proteinase (3CLpro) of novel coronaviruses is intricately linked to viral replication, making it a crucial target for antiviral agents. In this study, we employed two fingerprint descriptors (ECFP_4 and MACCS) to comprehensively characterize 889 compounds in our dataset. We constructed 24 classification models using machine learning algorithms, including Support Vector Machine (SVM), Random Forest (RF), extreme Gradient Boosting (XGBoost), and Deep Neural Networks (DNN). Among these models, the DNN- and ECFP_4-based Model 1D_2 achieved the most promising results, with a remarkable Matthews correlation coefficient (MCC) value of 0.796 in the 5-fold cross-validation and 0.722 on the test set. The application domains of the models were analysed using dSTD-PRO calculations. The collected 889 compounds were clustered by K-means algorithm, and the relationships between structural fragments and inhibitory activities of the highly active compounds were analysed for the 10 obtained subsets. In addition, based on 464 3CLpro inhibitors, 27 QSAR models were constructed using three machine learning algorithms with a minimum root mean square error (RMSE) of 0.509 on the test set. The applicability domains of the models and the structure-activity relationships responded from the descriptors were also analysed.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Aprendizaje Automático , Relación Estructura-Actividad Cuantitativa , SARS-CoV-2 , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Antivirales/farmacología , Antivirales/química , Máquina de Vectores de Soporte , COVID-19/virología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Betacoronavirus/efectos de los fármacos , Betacoronavirus/enzimología , Cisteína Endopeptidasas/química
2.
Future Med Chem ; 16(9): 887-903, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618977

RESUMEN

Background: The epidemic caused by SARS-CoV-2 swept the world in 2019. The 3C-like protease (3CLpro) of SARS-CoV-2 plays a key role in viral replication, and its inhibition could inhibit viral replication. Materials & methods: The virtual screen based on receptor-ligand pharmacophore models and molecular docking were conducted to obtain the novel scaffolds of the 3CLpro. The molecular dynamics simulation was also carried out. All compounds were synthesized and evaluated in biochemical assays. Results: The compound C2 could inhibit 3CLpro with a 72% inhibitory rate at 10 µM. The covalent docking showed that C2 could form a covalent bond with the Cys145 in 3CLpro. Conclusion: C2 could be a potent lead compound of 3CLpro inhibitors against SARS-CoV-2.


[Box: see text].


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Humanos , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Tratamiento Farmacológico de COVID-19 , Relación Estructura-Actividad
3.
J Biomed Sci ; 29(1): 65, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36064696

RESUMEN

Unprecedented efforts of the researchers have been witnessed in the recent past towards the development of vaccine platforms for the control of the COVID-19 pandemic. Albeit, vaccination stands as a practical strategy to prevent SARS-CoV-2 infection, supplementing the anti-COVID19 arsenal with therapeutic options such as small molecules/peptides and antibodies is being conceived as a prudent strategy to tackle the emerging SARS-CoV-2 variants. Noteworthy to mention that collective efforts from numerous teams have led to the generation of a voluminous library composed of chemically and mechanistically diverse small molecules as anti-COVID19 scaffolds. This review article presents an overview of medicinal chemistry campaigns and drug repurposing programs that culminated in the identification of a plethora of small molecule-based anti-COVID19 drugs mediating their antiviral effects through inhibition of proteases, S protein, RdRp, ACE2, TMPRSS2, cathepsin and other targets. In light of the evidence ascertaining the potential of small molecule drugs to approach conserved proteins required for the viral replication of all coronaviruses, accelerated FDA approvals are anticipated for small molecules for the treatment of COVID19 shortly. Though the recent attempts invested in this direction in pursuit of enrichment of the anti-COVID-19 armoury (chemical tools) are praiseworthy, some strategies need to be implemented to extract conclusive benefits of the recently reported small molecule viz. (i) detailed preclinical investigation of the generated anti-COVID19 scaffolds (ii) in-vitro profiling of the inhibitors against the emerging SARS-CoV-2 variants (iii) development of assays enabling rapid screening of the libraries of anti-COVID19 scaffold (iv) leveraging the applications of machine learning based predictive models to expedite the anti-COVID19 drug discovery campaign (v) design of antibody-drug conjugates.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Vacunas , COVID-19/prevención & control , Humanos , Pandemias , Péptidos , SARS-CoV-2
4.
Chem Zvesti ; 76(7): 4393-4404, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35400796

RESUMEN

The COVID-19 pandemic emerged in 2019, bringing with it the need for greater stores of effective antiviral drugs. This paper deals with the conformation-independent, QSAR model, developed by employing the Monte Carlo optimization method, as well as molecular graphs and the SMILES notation-based descriptors for the purpose of modeling the SARS-CoV-3CLpro enzyme inhibition. The main purpose was developing a reproducible model involving easy interpretation, utilized for a quick prediction of the inhibitory activity of SAR-CoV-3CLpro. The following statistical parameters were present in the best-developed QSAR model: (training set) R 2 = 0.9314, Q 2 = 0.9271; (test set) R 2 = 0.9243, Q 2 = 0.8986. Molecular fragments, defined as SMILES notation descriptors, that have a positive and negative impact on 3CLpro inhibition were identified on the basis of the results obtained for structural indicators, and were applied to the computer-aided design of five new compounds with (4-methoxyphenyl)[2-(methylsulfanyl)-6,7-dihydro-1H-[1,4]dioxino[2,3-f]benzimidazol-1-yl]methanone as a template molecule. Molecular docking studies were used to examine the potential inhibition effect of designed molecules on SARS-CoV-3CLpro enzyme inhibition and obtained results have high correlation with the QSAR modeling results. In addition, the interactions between the designed molecules and amino acids from the 3CLpro active site were determined, and the energies they yield were calculated. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-022-02170-8.

5.
Molecules ; 27(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163923

RESUMEN

In spite of advances in vaccination, control of the COVID-19 pandemic will require the use of pharmacological treatments against SARS-CoV2. Their development needs to consider the existence of two phases in the disease, namely the viral infection and the inflammatory stages. The main targets for antiviral therapeutic intervention are: (a) viral proteins, including the spike (S) protein characteristic of the viral cover and the viral proteases in charge of processing the polyprotein arising from viral genome translation; (b) host proteins, such as those involved in the processes related to viral entry into the host cell and the release of the viral genome inside the cell, the elongation factor eEF1A and importins. The use of antivirals targeted at host proteins is less developed but it has the potential advantage of not being affected by mutations in the genome of the virus and therefore being active against all its variants. Regarding drugs that address the hyperinflammatory phase of the disease triggered by the so-called cytokine storm, the following strategies are particularly relevant: (a) drugs targeting JAK kinases; (b) sphingosine kinase 2 inhibitors; (c) antibodies against interleukin 6 or its receptor; (d) use of the traditional anti-inflammatory corticosteroids.


Asunto(s)
Antivirales/química , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/patología , Química Farmacéutica , Humanos , Inflamación/tratamiento farmacológico , Inflamación/etiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/ultraestructura
6.
ChemMedChem ; 17(8): e202100782, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35112482

RESUMEN

The recent emergence of pandemic of coronavirus (COVID-19) caused by SARS-CoV-2 has raised significant global health concerns. More importantly, there is no specific therapeutics currently available to combat against this deadly infection. The enzyme 3-chymotrypsin-like cysteine protease (3CLpro) is known to be essential for viral life cycle as it controls the coronavirus replication. 3CLpro could be a potential drug target as established before in the case of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). In the current study, we wanted to explore the potential of fused flavonoids as 3CLpro inhibitors. Fused flavonoids (5a,10a-dihydro-11H-benzofuro[3,2-b]chromene) are unexplored for their potential bioactivities due to their low natural occurrences. Their synthetic congeners are also rare due to unavailability of general synthetic methodology. Here we designed a simple strategy to synthesize 5a,10a-dihydro-11H-benzofuro[3,2-b]chromene skeleton and it's four novel derivatives. Our structural bioinformatics study clearly shows excellent potential of the synthesized compounds in comparison to experimentally validated inhibitor N3. Moreover, in-silico ADMET study displays excellent druggability and extremely low level of toxicity of the synthesized molecules. Further, for better understanding, the molecular dynamic approach was implemented to study the change in dynamicity after the compounds bind to the protein. A detailed investigation through clustering analysis and distance calculation gave us sound comprehensive data about their molecular interaction. In summary, we anticipate that the currently synthesized molecules could not only be a potential set of inhibitors against 3CLpro but also the insights acquired from the current study would be instrumental in further developing novel natural flavonoid based anti-COVID therapeutic spectrums.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/química , Antivirales/farmacología , Benzopiranos/farmacología , Benzopiranos/uso terapéutico , Flavonoides/química , Flavonoides/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química
7.
Mini Rev Med Chem ; 22(2): 273-311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33687881

RESUMEN

Due to the high mortality rate of the 2019 coronavirus disease (COVID-19) pandemic, there is an immediate need to discover drugs that can help before a vaccine becomes available. Given that the process of producing new drugs is so long, the strategy of repurposing existing drugs is one of the promising options for the urgent treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19 disease. Although FDA has approved Remdesivir for the use in hospitalized adults and pediatric patients suffering from COVID-19, no fully effective and reliable drug has been yet identified worldwide to treat COVID-19 specifically. Thus, scientists are still trying to find antivirals specific to COVID-19. This work reviews the chemical structure, metabolic pathway, and mechanism of action of the existing drugs with potential therapeutic applications for COVID-19. Furthermore, we summarized the molecular docking stimulation of the medications related to key protein targets. These already established drugs could be further developed, and after their testing through clinical trials, they could be used as suitable therapeutic options for patients suffering from COVID-19.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Redes y Vías Metabólicas/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Antivirales/uso terapéutico , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/patogenicidad
8.
Molecules ; 26(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34641337

RESUMEN

We report the design and synthesis of a series of new 5-chloropyridinyl esters of salicylic acid, ibuprofen, indomethacin, and related aromatic carboxylic acids for evaluation against SARS-CoV-2 3CL protease enzyme. These ester derivatives were synthesized using EDC in the presence of DMAP to provide various esters in good to excellent yields. Compounds are stable and purified by silica gel chromatography and characterized using 1H-NMR, 13C-NMR, and mass spectral analysis. These synthetic derivatives were evaluated in our in vitro SARS-CoV-2 3CLpro inhibition assay using authentic SARS-CoV-2 3CLpro enzyme. Compounds were also evaluated in our in vitro antiviral assay using quantitative VeroE6 cell-based assay with RNAqPCR. A number of compounds exhibited potent SARS-CoV-2 3CLpro inhibitory activity and antiviral activity. Compound 9a was the most potent inhibitor, with an enzyme IC50 value of 160 nM. Compound 13b exhibited an enzyme IC50 value of 4.9 µM. However, it exhibited a potent antiviral EC50 value of 24 µM in VeroE6 cells. Remdesivir, an RdRp inhibitor, exhibited an antiviral EC50 value of 2.4 µM in the same assay. We assessed the mode of inhibition using mass spectral analysis which suggested the formation of a covalent bond with the enzyme. To obtain molecular insight, we have created a model of compound 9a bound to SARS-CoV-2 3CLpro in the active site.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/química , Antivirales/farmacología , Chlorocebus aethiops , Proteasas 3C de Coronavirus/metabolismo , Ésteres/química , Ésteres/farmacología , Halogenación , Humanos , Ibuprofeno/análogos & derivados , Ibuprofeno/farmacología , Indometacina/análogos & derivados , Indometacina/farmacología , Simulación del Acoplamiento Molecular , Piridinas/química , Piridinas/farmacología , SARS-CoV-2/metabolismo , Ácido Salicílico/química , Ácido Salicílico/farmacología , Células Vero
9.
SAR QSAR Environ Res ; 32(11): 863-888, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34634208

RESUMEN

The novel severe acute respiratory syndrome coronavirus (SARS CoV-2) was introduced as an epidemic in 2019 and had millions of deaths worldwide. Given the importance of this disease, the recommendation and design of new active compounds are crucial. 3-chymotrypsin-like protease (3 CLpro) inhibitors have been identified as potent compounds for treating SARS-CoV-2 disease. So, the design of new 3 CLpro inhibitors was proposed using a quantitative structure-activity relationship (QSAR) study. In this context, a powerful adaptive least absolute shrinkage and selection operator (ALASSO) penalized variable selection method with inherent advantages coupled with a nonlinear artificial neural network (ANN) modelling method were used to provide a QSAR model with high interpretability and predictability. After evaluating the accuracy and validity of the developed ALASSO-ANN model, new compounds were proposed using effective descriptors, and the biological activity of the new compounds was predicted. Ligand-receptor (LR) interactions were also performed to confirm the interaction strength of the compounds using molecular docking (MD) study. The pharmacokinetics properties and calculated Lipinski's rule of five were applied to all proposed compounds. Due to the ease of synthesis of these suggested new compounds, it is expected that they have acceptable pharmacological properties.


Asunto(s)
Antivirales/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/química , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacocinética , Proteasas 3C de Coronavirus/química , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Redes Neurales de la Computación , Inhibidores de Proteasas/farmacocinética , Relación Estructura-Actividad Cuantitativa , Reproducibilidad de los Resultados , SARS-CoV-2/enzimología
10.
SAR QSAR Environ Res ; 32(6): 473-493, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34011224

RESUMEN

COVID-19 is the most unanticipated incidence of 2020 affecting the human population worldwide. Currently, it is utmost important to produce novel small molecule anti-SARS-CoV-2 drugs urgently that can save human lives globally. Based on the earlier SARS-CoV and MERS-CoV infection along with the general characters of coronaviral replication, a number of drug molecules have been proposed. However, one of the major limitations is the lack of experimental observations with different drug molecules. In this article, 70 diverse chemicals having experimental SARS-CoV-2 3CLproinhibitory activity were accounted for robust classification-based QSAR analysis statistically validated with 4 different methodologies to recognize the crucial structural features responsible for imparting the activity. Results obtained from all these methodologies supported and validated each other. Important observations obtained from these analyses were also justified with the ligand-bound crystal structure of SARS-CoV-2 3CLpro enzyme. Our results suggest that molecules should contain a 2-oxopyrrolidine scaffold as well as a methylene (hydroxy) sulphonic acid warhead in proper orientation to achieve higher inhibitory potency against SARS-CoV-2 3CLpro. Outcomes of our study may be able to design and discover highly effective SARS-CoV-2 3CLpro inhibitors as potential anticoronaviral therapy to crusade against COVID-19.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Proteasas 3C de Coronavirus/química , Diseño de Fármacos , Descubrimiento de Drogas , Modelos Moleculares , Inhibidores de Proteasas/química , Relación Estructura-Actividad Cuantitativa , SARS-CoV-2/enzimología
11.
Front Pharmacol ; 12: 583387, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33767619

RESUMEN

Background: The ongoing COVID-19 pandemic has created an alarming situation due to extensive loss of human lives and economy, posing enormous threat to global health security. Till date, no antiviral drug or vaccine against SARS-CoV-2 has reached the market, although a number of clinical trials are under way. The viral 3-chymotrypsin-like cysteine protease (3CLpro), playing pivotal roles in coronavirus replication and polyprotein processing, is essential for its life cycle. In fact, 3CLpro is already a proven drug discovery target for SARS- and MERS-CoVs. This underlines the importance of 3CL protease in the design of potent drugs against COVID-19. Methods: We have collected one hundred twenty-seven relevant literatures to prepare the review article. PubMed, Google Scholar and other scientific search engines were used to collect the literature based on keywords, like "SARS-CoVs-3CL protease," "medicinal plant and anti-SARS-CoVs-3CL protease" published during 2003-2020. However, earlier publications related to this topic are also cited for necessary illustration and discussion. Repetitive articles and non-English studies were excluded. Results: From the literature search, we have enlisted medicinal plants reported to inhibit coronavirus 3CL protease. Some of the plants like Isatis tinctoria L. (syn. Isatis indigotica Fort.), Torreya nucifera (L.) Siebold and Zucc., Psoralea corylifolia L., and Rheum palmatum L. have exhibited strong anti-3CLpro activity. We have also discussed about the phytochemicals with encouraging antiviral activity, such as, bavachinin, psoralidin, betulinic acid, curcumin and hinokinin, isolated from traditional medicinal plants. Conclusion: Currently, searching for a plant-derived novel drug with better therapeutic index is highly desirable due to lack of specific treatment for SARS-CoV-2. It is expected that in-depth evaluation of medicinally important plants would reveal new molecules with significant potential to inhibit coronavirus 3CL protease for development into approved antiviral drug against COVID-19 in future.

12.
J Enzyme Inhib Med Chem ; 36(1): 147-153, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33430659

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19). Since its emergence, the COVID-19 pandemic has not only distressed medical services but also caused economic upheavals, marking urgent the need for effective therapeutics. The experience of combating SARS-CoV and MERS-CoV has shown that inhibiting the 3-chymotrypsin-like protease (3CLpro) blocks the replication of the virus. Given the well-studied properties of FDA-approved drugs, identification of SARS-CoV-2 3CLpro inhibitors in an FDA-approved drug library would be of great therapeutic value. Here, we screened a library consisting of 774 FDA-approved drugs for potent SARS-CoV-2 3CLpro inhibitors, using an intramolecularly quenched fluorescence (IQF) peptide substrate. Ethacrynic acid, naproxen, allopurinol, butenafine hydrochloride, raloxifene hydrochloride, tranylcypromine hydrochloride, and saquinavir mesylate have been found to block the proteolytic activity of SARS-CoV-2 3CLpro. The inhibitory activity of these repurposing drugs against SARS-CoV-2 3CLpro highlights their therapeutic potential for treating COVID-19 and other Betacoronavirus infections.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Reposicionamiento de Medicamentos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Dominio Catalítico , Proteasas 3C de Coronavirus/química , Evaluación Preclínica de Medicamentos , Colorantes Fluorescentes , Humanos , Simulación del Acoplamiento Molecular , Especificidad por Sustrato
13.
Phytother Res ; 35(2): 864-876, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32985017

RESUMEN

Recently, the novel life-threatening coronavirus infection (COVID-19) was reported at the end of 2019 in Wuhan, China, and spread throughout the world in little time. The effective antiviral activities of natural products have been proved in different studies. In this review, regarding the effective herbal treatments on other coronavirus infections, promising natural products for COVID-19 treatment are suggested. An extensive search in Google Scholar, Science Direct, PubMed, ISI, and Scopus was done with search words include coronavirus, COVID-19, SARS, MERS, natural product, herb, plant, and extract. The consumption of herbal medicine such as Allium sativum, Camellia sinensis, Zingiber officinale, Nigella sativa, Echinacea spp. Hypericum perforatum, and Glycyrrhiza glabra, Scutellaria baicalensis can improve the immune response. It seems that different types of terpenoids have promising effects in viral replication inhibition and could be introduced for future studies. Additionally, some alkaloid structures such as homoharringtonine, lycorine, and emetine have strong anti-coronavirus effects. Natural products can inhibit different coronavirus targets such as S protein (emodin, baicalin) and viral enzymes replication such as 3CLpro (Iguesterin), PLpro (Cryptotanshinone), helicase (Silvestrol), and RdRp (Sotetsuflavone). Based on previous studies, natural products can be introduced as preventive and therapeutic agents in the fight against coronavirus.


Asunto(s)
Antivirales/uso terapéutico , Productos Biológicos/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Quimioprevención/métodos , Infecciones por Coronavirus/tratamiento farmacológico , Fitoterapia/métodos , Alcaloides de Amaryllidaceae/uso terapéutico , Antivirales/clasificación , Antivirales/farmacología , Productos Biológicos/farmacología , COVID-19/epidemiología , Coronavirus/clasificación , Coronavirus/efectos de los fármacos , Infecciones por Coronavirus/epidemiología , Humanos , Fenantridinas/uso terapéutico , Extractos Vegetales/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Scutellaria baicalensis , Terapias en Investigación/métodos , Replicación Viral/efectos de los fármacos
14.
J Mol Recognit ; 30(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28608547

RESUMEN

The Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging virus that poses a major challenge to clinical management. The 3C-like protease (3CLpro ) is essential for viral replication and thus represents a potential target for antiviral drug development. Presently, very few data are available on MERS-CoV 3CLpro inhibition by small molecules. We conducted extensive exploration of the pharmacophoric space of a recently identified set of peptidomimetic inhibitors of the bat HKU4-CoV 3CLpro . HKU4-CoV 3CLpro shares high sequence identity (81%) with the MERS-CoV enzyme and thus represents a potential surrogate model for anti-MERS drug discovery. We used 2 well-established methods: Quantitative structure-activity relationship (QSAR)-guided modeling and docking-based comparative intermolecular contacts analysis. The established pharmacophore models highlight structural features needed for ligand recognition and revealed important binding-pocket regions involved in 3CLpro -ligand interactions. The best models were used as 3D queries to screen the National Cancer Institute database for novel nonpeptidomimetic 3CLpro inhibitors. The identified hits were tested for HKU4-CoV and MERS-CoV 3CLpro inhibition. Two hits, which share the phenylsulfonamide fragment, showed moderate inhibitory activity against the MERS-CoV 3CLpro and represent a potential starting point for the development of novel anti-MERS agents. To the best of our knowledge, this is the first pharmacophore modeling study supported by in vitro validation on the MERS-CoV 3CLpro . HIGHLIGHTS: MERS-CoV is an emerging virus that is closely related to the bat HKU4-CoV. 3CLpro is a potential drug target for coronavirus infection. HKU4-CoV 3CLpro is a useful surrogate model for the identification of MERS-CoV 3CLpro enzyme inhibitors. dbCICA is a very robust modeling method for hit identification. The phenylsulfonamide scaffold represents a potential starting point for MERS coronavirus 3CLpro inhibitors development.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/enzimología , Quirópteros/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Proteínas Virales/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Betacoronavirus/efectos de los fármacos , Sitios de Unión , Simulación por Computador , Ligandos , Modelos Moleculares , Inhibidores de Proteasas/química , Relación Estructura-Actividad Cuantitativa , Curva ROC , Reproducibilidad de los Resultados , Proteínas Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA