Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.741
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39285163

RESUMEN

MXenes are the newest class of two-dimensional nanomaterials characterized by large surface area, high conductivity, and hydrophilicity. To further improve their performance for use in energy storage devices, heteroatoms or functional groups can be inserted into the Mxenes' structure increasing their stability. This work proposes insertion of lanthanum atoms into niobium-MXene (Nb-MX/La) that was characterized in terms of morphogy, structure, and electrochemical behavior. The addition of La to the Nb-MXene structure was essential to increase the spacing between the layers, improving the interaction with the electrolyte and enabling charge/discharge cycling in a higher potential window and at higher current densities. Nb-MX/La achieved a specific capacitance of up to 157 mF cm-2, a specific capacity of 42 mAh cm-2 at 250 mV s-1, a specific power of 37.5 mW cm-2, and a specific energy of 14.1 mWh cm-2 after 1000 charge/discharge cycles at 50 mA cm-2.

2.
Beilstein J Nanotechnol ; 15: 1153-1169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290526

RESUMEN

Since the discovery of graphene in 2004, the unique properties of two-dimensional materials have sparked intense research interest regarding their use as alternative materials in various photonic applications. Transition metal dichalcogenide monolayers have been proposed as transport layers in photovoltaic cells, but the promising characteristics of group IV-VI dichalcogenides are yet to be thoroughly investigated. This manuscript reports on monolayer Ge2Se2 (a group IV-VI dichalcogenide), its optoelectronic behavior, and its potential application in photovoltaics. When employed as a hole transport layer, the material fosters an astonishing device performance. We use ab initio modeling for the material prediction, while classical drift-diffusion drives the device simulations. Hybrid functionals calculate electronic and optical properties to maintain high accuracy. The structural stability has been verified using phonon spectra. The E-k dispersion reveals the investigated material's key electronic properties. The calculations reveal a direct bandgap of 1.12 eV for monolayer Ge2Se2. We further extract critical optical parameters using the Kubo-Greenwood formalism and Kramers-Kronig relations. A significantly large absorption coefficient and a high dielectric constant inspired the design of a monolayer Ge2Se2-based solar cell, exhibiting a high open circuit voltage of V oc = 1.11 V, a fill factor of 87.66%, and more than 28% power conversion efficiency at room temperature. Our findings advocate monolayer Ge2Se2 for various optoelectronic devices, including next-generation solar cells. The hybrid quantum-to-macroscopic methodology presented here applies to broader classes of 2D and 3D materials and structures, showing a path to the computational design of future photovoltaic materials.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39287514

RESUMEN

Two-dimensional (2D) transition-metal dichalcogenides (TMDCs), such as tungsten diselenide (WSe2), hold immense potential for applications in electronic and optoelectronic devices. However, a significant Schottky barrier height (SBH) at the metal-semiconductor (MS) interface reduces the electronic device performance. Here, we present a unique 2D/2D contact method for minimizing contact resistance and reducing the SBH. This approach utilizes vanadium-doped WSe2 (V-WSe2) as the drain and source contacts. The fabricated transistor exhibited a stable operation with p-type quasi-ohmic contact and a high on/off current ratio surpassing 108 at room temperature, reaching 1011 at 10 K. The device achieved an on-current of 68.87 µA, a high mobility of 103.80 cm2 V-1 s-1, a low contact resistance of 0.92 kΩ, and remarkably low SBH values of 1.51 meV for holes at VGS = -120 V with fixed VDS = 1 V. Furthermore, a Schottky photodiode has been fabricated, utilizing V-WSe2 and Cr as the asymmetric contact platform, showing a responsivity of 116 mA W1-. The findings of this study suggest a simple and efficient method for improving the performance of TMDC-based transistors.

4.
ACS Appl Mater Interfaces ; 16(36): 48585-48597, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39221512

RESUMEN

Nanostructured transition metal dichalcogenides have garnered significant research interest for physical and chemical sensing applications due to their unique crystal structure and large effective surface area. However, the high-yield synthesis of these materials on different substrates and in nanostructured films remains a challenge that hinders their real-world applications. In this work, we demonstrate the synthesis of two-dimensional (2D) tungsten disulfide (WS2) sheets on a hundred-milligram scale by sulfurization of tungsten trioxide (WO3) powder in an atmospheric pressure chemical vapor deposition reactor. The as-synthesized WS2 powders can be formulated into inks and deposited on a broad range of substrates using techniques like screen or inkjet printing, spin-coating, drop-casting, or airbrushing. Structural, morphological, and chemical composition analysis confirm the successful synthesis of edge-enriched WS2 sheets. The sensing performance of the WS2 films prepared with the synthesized 2D material was evaluated for ammonia (NH3) detection at different operating temperatures. The results reveal exceptional gas sensing responses, with the sensors showing a 100% response toward 5 ppm of NH3 at 150 °C. The sensor detection limit was experimentally verified to be below 1 ppm of NH3 at 150 °C. Selectivity tests demonstrated the high selectivity of the edge-enriched WS2 films toward NH3 in the presence of interfering gases like CO, benzene, H2, and NO2. Furthermore, the sensors displayed remarkable stability against high levels of humidity, with only a slight decrease in response from 100% in dry air to 93% in humid environments. Density functional theory and Bayesian optimization simulations were performed, and the theoretical results agree with the experimental findings, revealing that the interaction between gas molecules and WS2 is primarily based on physisorption.

5.
Micron ; 187: 103707, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277960

RESUMEN

Two-dimensional (2D) materials have gained significant attention as potential candidates for next-generation electronics, owing to their unique properties such as ultrathin layer thickness, mechanical flexibility, and tunable bandgaps. The distinctive characteristics of 2D materials necessitate the development of nanoscale advanced characterization methods. In this review, we explore the role of microscopy techniques in developing 2D materials-based electronics, from material synthesis and characterization to device performance and reliability. We address the applications of microscopies by delving into the perspectives of channel materials, metal contacts, dielectric materials, and device architectures. Additionally, we provide an outlook on the future directions and potential utilization of microscopy techniques in future 2D semiconductor industry.

6.
ACS Nano ; 18(37): 25614-25624, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39244663

RESUMEN

Suspended membranes of monatomic graphene exhibit great potential for applications in electronic and nanoelectromechanical devices. In this work, a "hot and dry" transfer process is demonstrated to address the fabrication and patterning challenges of large-area graphene membranes on top of closed, sealed cavities. Here, "hot" refers to the use of high temperature during transfer, promoting the adhesion. Additionally, "dry" refers to the absence of liquids when graphene and target substrate are brought into contact. The method leads to higher yields of intact suspended monolayer chemical vapor deposition (CVD) graphene and artificially stacked double-layer CVD graphene membranes than previously reported. The yield evaluation is performed using neural-network-based object detection in scanning electron microscopy (SEM) images, ascertaining high yields of intact membranes with large statistical accuracy. The suspended membranes are examined by Raman tomography and atomic force microscopy (AFM). The method is verified by applying the suspended graphene devices as piezoresistive pressure sensors. Our technology advances the application of suspended graphene membranes and can be extended to other two-dimensional materials.

7.
Nano Lett ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39267484

RESUMEN

We predict a very large spin-orbit torque (SOT) capability of magnetic chromium-based transition-metal dichalcogenide (TMD) monolayers in their Janus forms CrXTe, with X = S, Se. The structural inversion symmetry breaking, inherent to Janus structures is responsible for a large SOT response generated by giant Rashba splitting, equivalent to that obtained by applying a transverse electric field of ∼100 V nm-1 in non-Janus CrTe2, completely out of experimental reach. By performing transport simulations on carefully derived Wannier tight-binding models, Janus systems are found to exhibit an SOT performance comparable to the most efficient two-dimensional materials, while additionally allowing for field-free perpendicular magnetization switching, due to their reduced in-plane symmetry. Altogether, our findings evidence that magnetic Janus TMDs stand as suitable candidates for ultimate SOT-MRAM devices in an ultracompact self-induced SOT scheme.

8.
Luminescence ; 39(9): e4896, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39268684

RESUMEN

Layered transition metal dichalcogenides (TMDs), with an extensive surface area, intriguing tunable electrical and optical features, and a distinctive Van der Waals layered structure, yield outstanding sensing properties. Essentially, most TMDs originally existed in the crystallographic phase of a 2H trigonal prismatic structure, which is semiconducting in nature with poor electrocatalytic activity. In contrast, vanadium diselenide (VSe2) with its metastable metallic 1 T octahedral crystal structure has been proven to be an outstanding electrode material, embracing exceptional electrocatalytic behavior for various electrochemical (EC) applications. However, practically, VSe2 has hardly ever been explored in the field of biosensing technology. This study presents a novel EC biosensor based on the antibody of Salmonella Typhimurium (Anti-ST) immobilized on VSe2-supported Indium tin oxide (Anti-ST/VSe2/ITO) for quantitative and efficient Salmonella Typhimurium (ST) detection. The Anti-ST/VSe2/ITO bioelectrode displayed a linear relationship with ST concentration (1.3 × 10-107 CFU/ml) with a limit of detection (LOD) (0.096 CFU/ml) that is lower than previously reported ST biosensors and impressively high sensitivity (0.001996 µA.mL/CFU). Furthermore, the proposed electrode's electroanalytical activity was evaluated in spiked sugarcane juice, demonstrating distinguished applicability for specific ST detection in real samples.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Salmonella typhimurium , Salmonella typhimurium/aislamiento & purificación , Salmonella typhimurium/inmunología , Compuestos de Selenio/química , Electrodos , Límite de Detección , Inmunoensayo/métodos
9.
Nanomaterials (Basel) ; 14(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39269037

RESUMEN

The scaling of bulk Si-based transistors has reached its limits, while novel architectures such as FinFETs and GAAFETs face challenges in sub-10 nm nodes due to complex fabrication processes and severe drain-induced barrier lowering (DIBL) effects. An effective strategy to avoid short-channel effects (SCEs) is the integration of low-dimensional materials into novel device architectures, leveraging the coupling between multiple gates to achieve efficient electrostatic control of the channel. We employed TCAD simulations to model multi-gate FETs based on various dimensional systems and comprehensively investigated electric fields, potentials, current densities, and electron densities within the devices. Through continuous parameter scaling and extracting the sub-threshold swing (SS) and DIBL from the electrical outputs, we offered optimal MoS2 layer numbers and single-walled carbon nanotube (SWCNT) diameters, as well as designed structures for multi-gate FETs based on monolayer MoS2, identifying dual-gate transistors as suitable for high-speed switching applications. Comparing the switching performance of two device types at the same node revealed CNT's advantages as a channel material in mitigating SCEs at sub-3 nm nodes. We validated the performance enhancement of 2D materials in the novel device architecture and reduced the complexity of the related experimental processes. Consequently, our research provides crucial insights for designing next-generation high-performance transistors based on low-dimensional materials at the scaling limit.

10.
Nanomaterials (Basel) ; 14(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39269099

RESUMEN

Nanoscale-engineered surfaces induce regulated strain in atomic layers of 2D materials that could be useful for unprecedented photonics applications and for storing and processing quantum information. Nevertheless, these strained structures need to be investigated extensively. Here, we present texture-induced strain distribution in single-layer WS2 (1L-WS2) transferred over Si/SiO2 (285 nm) substrate. The detailed nanoscale landscapes and their optical detection are carried out through Atomic Force Microscopy, Scanning Electron Microscopy, and optical spectroscopy. Remarkable differences have been observed in the WS2 sheet localized in the confined well and at the periphery of the cylindrical geometry of the capped engineered surface. Raman spectroscopy independently maps the whole landscape of the samples, and temperature-dependent helicity-resolved photoluminescence (PL) experiments (off-resonance excitation) show that suspended areas sustain circular polarization from 150 K up to 300 K, in contrast to supported (on un-patterned area of Si/SiO2) and strained 1L-WS2. Our study highlights the impact of the dielectric environment on the optical properties of two-dimensional (2D) materials, providing valuable insights into the selection of appropriate substrates for implementing atomically thin materials in advanced optoelectronic devices.

11.
Small ; : e2406397, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223859

RESUMEN

Silicon heterojunction (SHJ) solar cells have set world-record efficiencies among single-junction silicon solar cells, accelerating their commercial deployment. Despite these clear efficiency advantages, the high costs associated with low-temperature silver pastes (LTSP) for metallization have driven the search for more economical alternatives in mass production. 2D transition metal carbides (MXenes) have attracted significant attention due to their tunable optoelectronic properties and metal-like conductivity, the highest among all solution-processed 2D materials. MXenes have emerged as a cost-effective alternative for rear-side electrodes in SHJ solar cells. However, the use of MXene electrodes has so far been limited to lab-scale SHJ solar cells. The efficiency of these devices has been constrained by a fill factor (FF) of under 73%, primarily due to suboptimal charge transport at the contact layer/MXene interface. Herein, a silver nanowire (AgNW)-assisted Ti3C2Tx MXene electrode contact is introduced and explores the potential of this hybrid electrode in industry-scale solar cells. By incorporating this hybrid electrode into SHJ solar cells, 9.0 cm2 cells are achieved with an efficiency of 24.04% (FF of 81.64%) and 252 cm2 cells with an efficiency of 22.17% (FF of 76.86%), among the top-performing SHJ devices with non-metallic electrodes to date. Additionally, the stability and cost-effectiveness of these solar cells are discussed.

12.
Adv Sci (Weinh) ; : e2406126, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225659

RESUMEN

Free-standing gallium nitride has been prepared using various methods; however, the removal of the original substrate is still challenging with low success rates. In this work, 2-inch free-standing GaN films are obtained by direct growth on a fluoro phlogopite mica by hydride vapor-phase epitaxy. Depending on the van der Waals (vdW) interaction between GaN and mica, the effect of the significant lattice mismatch is effectively reduced; thus, enabling the production of a high-quality wafer-scale GaN film on mica. The vdW-induced cracks at GaN-mica interface are found to be initiated near the interface so that GaN can easily separate from mica during rapid cooling. Owing to the hydrophilic nature of mica, the residual GaN on the mica can be lifted off by following deionized water treatment, and the mica substrate can be repeatedly used to grow free-standing GaN films. The self-separated GaN films grown on both pristine and used mica substrates are single crystallinity and strain-free. Additionally, a fully functional ultraviolet light-emitting diode is demonstrated to show that the self-separated GaN films are of device quality. The proposed approach achieves epitaxial growth of wafer-scale single-crystalline GaN on 2D materials and provides a new substrate option in the technology of III-V materials.

13.
Small ; : e2404346, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235385

RESUMEN

Magnetic 2D materials offer a promising platform for manipulating quantum states at the nanoscale. Recent studies have underscored the significant influence of 2D magnetic materials on the optical behaviors of transition-metal dichalcogenides (TMDs), revealing phenomena such as interlayer exciton-magnon interactions, magnetization-dependent valley polarization, and an enhanced Zeeman effect. However, the controlled manipulation of anisotropic optical properties in TMDs via magnetism remains challenging. Here, the magnetic ordering in FePS3 profoundly impacts the optical characteristics of WSe2, achieving a giant linear polarization degree of 5.1 in exciton emission is demonstrated. This is supported by a detailed analysis of low-temperature photoluminescence (PL) and Raman spectra from nL-FePS3/WSe2 heterostructures. These findings indicate that a phase transition in FePS3 from paramagnetic to antiferromagnetic enhances interlayer Coulomb interactions, inducing a transition from non-polar to polar behavior in the heterostructures. Additionally, valley-polarized PL spectra under magnetic fields from -9 to 9 T reveal the influence of FePS3 on valley polarization and Zeeman splitting of excitons in monolayer WSe2. These results present a novel strategy for tailoring the optoelectronic properties of 2D magnetic van der Waals heterostructures, paving the way for advancements in nanoscale device design.

14.
Small ; : e2402668, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235584

RESUMEN

Photodetectors are one of the most critical components for future optoelectronic systems and it undergoes significant advancements to meet the growing demands of diverse applications spanning the spectrum from ultraviolet (UV) to terahertz (THz). 2D materials are very attractive for photodetector applications because of their distinct optical and electrical properties. The atomic-thin structure, high carrier mobility, low van der Waals (vdWs) interaction between layers, relatively narrower bandgap engineered through engineering, and significant absorption coefficient significantly benefit the chip-scale production and integration of 2D materials-based photodetectors. The extremely sensitive detection at ambient temperature with ultra-fast capabilities is made possible with the adaptability of 2D materials. Here, the recent progress of photodetectors based on 2D materials, covering the spectrum from UV to THz is reported. In this report, the interaction of light with 2D materials is first deliberated on in terms of optical physics. Then, various mechanisms on which detectors work, important performance parameters, important and fruitful fabrication methods, fundamental optical properties of 2D materials, various types of 2D materials-based detectors, different strategies to improve performance, and important applications of photodetectors are discussed.

15.
ACS Nano ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248347

RESUMEN

The rapid diffusion kinetics and smallest ion radius make protons the ideal cations toward the ultimate energy storage technology combining the ultrafast charging capabilities of supercapacitors and the high energy densities of batteries. Despite the concept existing for centuries, the lack of satisfactory electrode materials hinders its practical development. Recently, the rapid advancement of the emerging two-dimensional (2D) materials, characterized by their ultrathin morphology, interlayer van der Waals gaps, and distinctive electrochemical properties, injects promises into future proton-based energy storage systems. In this perspective, we comprehensively summarize the current advances in proton-based energy storage based on 2D materials. We begin by providing an overview of proton-based energy storage systems, including proton batteries, pseudocapacitors and electrical double layer capacitors. We then elucidate the fundamental knowledge about proton transport characteristics, including in electrolytes, at electrolyte/electrode interfaces, and within electrode materials, particularly in 2D material systems. We comprehensively summarize specific cases of 2D materials as proton electrodes, detailing their design concepts, proton transport mechanism and electrochemical performance. Finally, we provide insights into the prospects of proton-based energy storage systems, emphasizing the importance of rational design of 2D electrode materials and matching electrolyte systems.

16.
Small ; : e2401474, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248703

RESUMEN

In this short review, an overview of recent progress in deploying advanced characterization techniques is provided to understand the effects of spatial variation and inhomogeneities in moiré heterostructures over multiple length scales. Particular emphasis is placed on correlating the impact of twist angle misalignment, nano-scale disorder, and atomic relaxation on the moiré potential and its collective excitations, particularly moiré excitons. Finally, future technological applications leveraging moiré excitons are discussed.

17.
Nanotechnology ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39241786

RESUMEN

CoSb has emerged as an important two-dimensional atomic crystal for its potential application in energy conversion and superconductivity. Controllable growth in terms of thickness and structural phase is necessary to elucidate its intrinsic properties at the 2D limit. Here we demonstrate the chemical vapour deposition of ultrathin hexagonal CoSb crystals on the mica substrate. The thickness could be controlled by growth time and the structural phase could be tuned by the precursor's supply ratio. Electrical transport measurements show that the CVD-grown ultrathin hexagonal CoSb is a good metal with non-Fermi liquid behaviour. No apparent superconductivity has been observed down to 2.8 K. Here we demonstrate the chemical vapour deposition of ultrathin hexagonal CoSb crystals on the mica substrate. The thickness could be controlled by growth time and the structural phase could be tuned by the precursor's supply ratio. Electrical transport measurements show that the CVD-grown ultrathin hexagonal CoSb is a good metal with non-Fermi liquid behaviour. .

18.
Adv Sci (Weinh) ; : e2404436, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239846

RESUMEN

Exploration of high-temperature bosonic condensation is of significant importance for the fundamental many-body physics and applications in nanodevices, which, however, remains a huge challenge. Here, in combination of many-body perturbation theory and first-principles calculations, a new-type spatially indirect exciton can be optically generated in two-dimensional (2D) Bi2S2Te because of its unique structure feature. In particular, the spin-singlet spatially indirect excitons in Bi2S2Te monolayer are dipole/parity allowed and reveal befitting characteristics for excitonic condensation, such as small effective mass and satisfied dilute limitation. Based on the layered Bi2S2Te, the possibility of the high-temperature excitonic Bose-Einstein condensation (BEC) and superfluid state in two dimensions, which goes beyond the current paradigms in both experiment and theory, are proved. It should be highlighted that record-high phase transition temperatures of 289.7 and 72.4 K can be theoretically predicted for the excitonic BEC and superfluidity in the atomic thin Bi2S2Te, respectively. It therefore can be confirmed that Bi2S2Te featuring bound bosonic states is a fascinating 2D platform for exploring the high-temperature excitonic condensation and applications in such as quantum computing and dissipationless nanodevices.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39241231

RESUMEN

Two-dimensional graphene and graphene-based materials are attracting increasing interest in neuromorphic computing applications by the implementation of memristive architectures that enable the closest solid-state equivalent to biological synapses and neurons. However, the state-of-the-art fabrication methodology involves routine use of high-temperature processes and multistepped chemical synthesis, often on a rigid substrate constraining the experimental exploration in the field to high-tech facilities. Here, we demonstrate the use of a one-step process using a commercial laser to fabricate laser-induced graphene (LIG) memristors directly on a flexible polyimide substrate. For the first time, a volatile resistive switching phenomenon is reported in the LIG without using any additional materials. The absence of any precursor or patterning mask greatly simplifies the process while reducing the cost and providing greater controllability. The fabricated memristors show multilevel resistance-switching characteristics with high endurance and tunable timing characteristics. The recovery time and the trigger pulse-dependent state change are shown to be highly suitable for its use as a synaptic element and in the realization of leaky-integrate and fire neuron in neuromorphic circuits.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39265542

RESUMEN

The exploration of novel two-dimensional (2D) materials with a direct band gap and high mobility has attracted huge attention due to their potential application in electronic and optoelectronic devices. Here, we propose a feasible way to construct multiatomic monolayer Ca2A2Z5 (A = Al and Ga and Z = S, Se, and Te) by first-principles calculations. Our results indicated that the energies of α1-phase Ca2A2Z5 are slightly lower than those of experimentally synthesized α3-phase-like Ca2A2Z5 monolayers with excellent structural stability. Moreover, the α1- and α3-phase Ca2A2Z5 monolayers possess not only direct band gaps but also high electron mobilities (up to ∼103 cm2 V-1 s-1), demonstrating an intriguing range of visible light absorption. Importantly, α1- and α3-phase Ca2Ga2Se5 monolayers are good donor materials, and the corresponding Ca2Ga2Se5/ZrSe2 type-II heterostructures exhibit desirable power conversion efficiencies of 22.4% and 22.9%, respectively. Our findings provide a feasible way to explore new 2D materials and offer several Ca2A2Z5 candidate monolayers for the application of high-performance solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA