Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37688032

RESUMEN

At the current stage of long-wavelength infrared (LWIR) detector technology development, the only commercially available detectors that operate at room temperature are thermal detectors. However, the efficiency of thermal detectors is modest: they exhibit a slow response time and are not very useful for multispectral detection. On the other hand, in order to reach better performance (higher detectivity, better response speed, and multispectral response), infrared (IR) photon detectors are used, requiring cryogenic cooling. This is a major obstacle to the wider use of IR technology. For this reason, significant efforts have been taken to increase the operating temperature, such as size, weight and power consumption (SWaP) reductions, resulting in lower IR system costs. Currently, efforts are aimed at developing photon-based infrared detectors, with performance being limited by background radiation noise. These requirements are formalized in the Law 19 standard for P-i-N HgCdTe photodiodes. In addition to typical semiconductor materials such as HgCdTe and type-II AIIIBV superlattices, new generations of materials (two-dimensional (2D) materials and colloidal quantum dots (CQDs)) distinguished by the physical properties required for infrared detection are being considered for future high-operating-temperature (HOT) IR devices. Based on the dark current density, responsivity and detectivity considerations, an attempt is made to determine the development of a next-gen IR photodetector in the near future.

2.
Small Methods ; 6(2): e2101046, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34935297

RESUMEN

Low light absorption and limited carrier lifetime are two limiting factors hampering the further breakthrough of the performance of 2D materials (2DMs)-based photodetectors. This study proposes an ingenious dielectric engineering strategy toward boosting the photosensitivity. Periodic dielectric structures (PDSs), including SiO2 /h-BN, SiO2 /Al2 O3 , and SiO2 /SrTiO3 (STO), are exploited to couple with 2D photosensitive channels (denoted as PDS-2DMs). The responsivity, external quantum efficiency, and detectivity of an optimized SiO2 /STO(300 nm) -WSe2 photodetector reach 89081 A W-1 , 2.7 × 107 %, and 1.8 × 1013 Jones, respectively. These performance metrics are orders of magnitude higher than a pristine WSe2 photodetector, enabling reliable sub-1 pW weak light detection. Based on systematic characterizations and first-principle calculations, such dramatic performance improvement is associated with the promoted direct bandgap transition, reduced exciton binding energy, and PDS-induced periodic intramolecular built-in electric field across the atomically thin channels, which efficiently separates the photoexcited electron-hole pairs. More inspiringly, this strategy is also successfully exploited to 2D WS2 photodetectors, demonstrating broad applicability. As a whole, this work promises an exceptional avenue to ameliorate 2DM photodetectors and opens up a new horizon "dielectric optoelectronics," simultaneously highlighting the role of dielectric environment during analyzing the fundamentals of 2DM devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA