Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1410505, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027092

RESUMEN

Coenzyme Q10 (CoQ10) is an essential medicinal ingredient. In this study, we obtained a high-yielding mutant strain of CoQ10, VK-2-3, by subjecting R. sphaeroides V-0 (V-0) to a 12C6+ heavy ion beam and high-voltage prick electric field treatment. To investigate the mutation mechanism, the complete genomes of VK-2-3 and V-0 were sequenced. Collinearity analysis revealed that the nicotinamide adenine dinucleotide-dependent dehydrogenase (NAD) gene underwent rearrangement in the VK-2-3 genome. The NAD gene was overexpressed and silenced in V-0, and this construct was named RS.NAD and RS.ΔNAD. The results showed that the titers of CoQ10 in the RS.NAD and RS.ΔNAD increased and decreased by 16.00 and 33.92%, respectively, compared to those in V-0, and these differences were significant. Our results revealed the mechanism by which the VK-2-3 CoQ10 yield increases through reverse metabolic engineering, providing insights for genetic breeding and mechanistic analysis.

2.
Int J Radiat Biol ; 97(5): 657-663, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33704009

RESUMEN

PURPOSE: The objective of this research was to explore the dose-effect relationships of dicentric plus ring (dic + r), micronucleus (MN) and nucleoplasmic bridges (NPB) induced by carbon ions in human lymphocytes. MATERIALS AND METHODS: Venous blood samples were collected from three healthy donors. 12C6+ ions beam was used to irradiate the blood samples at the energy of 330 MeV and linear energy transfer (LET) of 50 keV/µm with a dose rate of 1 Gy/min in the spread-out Bragg peak. The irradiated doses were 0 (sham irradiation), 1, 2, 3, 4, 5 and 6 Gy. Dic + r chromosomes aberrations were scored in metaphases. The cytokinesis-block micronucleus cytome (CBMN) was conducted to analyze MN and NPB. The maximum low-dose relative biological effectiveness (RBEM) values of the induction of dic + r, MN and NPB in human lymphocytes for 12C6+ ions irradiation was calculated relative to 60Co γ-rays. RESULTS: The frequencies of dic + r, MN and NPB showed significantly increases in a dose-depended manner after exposure to 12C6+ ions. The distributions of dic + r and MN exhibited overdispersion, while the distribution of NPB agreed with Poisson distribution at all doses. Linear-quadratic equations were established based on the frequencies of dic + r and MN. The dose-response curves of NPB frequencies followed a linear model. The derived RBEM values for dic + r, MN and NPB in human lymphocytes irradiated with 12C6+ ions were 8.07 ± 2.73, 2.69 ± 0.20 and 4.00 ± 2.69 in comparison with 60Co γ-rays. CONCLUSION: The dose-response curves of carbon ions-induced dic + r, MN and NPB were constructed. These results could be helpful to improve radiation risk assessment and dose estimation after exposed to carbon ions irradiation.


Asunto(s)
Carbono/efectos adversos , Núcleo Celular/efectos de la radiación , Linfocitos/metabolismo , Linfocitos/efectos de la radiación , Cromosomas en Anillo , Núcleo Celular/metabolismo , Relación Dosis-Respuesta en la Radiación , Humanos , Linfocitos/citología , Pruebas de Micronúcleos
3.
Eng Life Sci ; 18(10): 721-731, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32624866

RESUMEN

Applied heavy ion irradiation technology and butanol industrial practices as a whole have been used as a strategy for the development of an attractive alternative to petroleum-based fuels. Clostridium acetobutylicum (C. acetobutylicum) strains are well documented as fermentation strains for the production of biobutanol. However, it has been reported that solvent production inhibits the growth of these strains, and the accumulation of acetate also inhibits biomass synthesis, rendering the production of butanol from acetone-butanol-ethanol (ABE) fermentation processes economically challenging. In this manuscript, we propose the use of high-energy carbon heavy ion irradiation from the Heavy Ion Research Facility in Lanzhou (HIRFL) to obtain a culture with an increased butanol yield. Our findings suggest that the use of a high-energy 12C6+ heavy ion irradiation dose of 45 Gy with an energy of 135 AMeV and ion pulses/levels of 106-108 favours ABE solvent production in an irradiated strain compared with the non-irradiated strain. The strategy reported in this manuscript may contribute to the development of a cost-effective butanol fermentation process that is competitive with similar fermentation processes.

4.
Acta Biochim Biophys Sin (Shanghai) ; 49(11): 989-998, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036263

RESUMEN

The heavy ion beam is considered to be the ideal source for radiotherapy. The p53 tumor suppressor gene senses DNA damage and transducts intracellular apoptosis signals. Previous reports showed that the heavy ion beam can trigger complex forms of damage to cellular DNA, leading to cell cycle arrest and apoptosis of HepG2 human liver cancer cells; however, the mechanisms remains unclear fully. In order to explore whether the intrinsic or extrinsic pathway participates this process, HepG2 cells were treated with 12C6+ HIB irradiation at doses of 0 (control), 1, 2, 4, and 6 Gy with various methods employed to understand relevant mechanisms, such as detection of apoptosis, cell cycle, and Fas expression by flow cytometry, analysis of apoptotic morphology by electron microscopy and laser scanning confocal microscopy, and screening differentially expressed genes relating to p53 signaling pathway by PCR-array assay following with any genes confirmed by western blot analysis. This study showed that 12C6+ heavy ion beam irradiation at a dose of 6 Gy leads to endogenous DNA double-strand damage, G2/M cell cycle arrest, and apoptosis of human HepG2 cells via synergistic effect of the extrinsic and intrinsic pathways. Differentially expressed genes in the p53 signaling pathway related to DNA damage repair, apoptosis, cycle regulation, metastasis, deterioration and radioresistance were also discovered. Consequently, the expressions of Fas, TP53BP2, TP53AIP1, and CASP9 were confirmed upregulated after 12C6+ HIB irradiation treatment. In conclusion, this study demonstrated the mechanisms of inhibition and apoptosis induced by 12C6+ heavy ion beam irradiation on HepG2 cancer cells is mediated by initiation of the biological function of p53 signaling pathway including extrinsic and intrinsic apoptosis pathway.


Asunto(s)
Radioterapia de Iones Pesados , Transducción de Señal/efectos de la radiación , Proteína p53 Supresora de Tumor/fisiología , Anexina A5/análisis , Apoptosis/efectos de la radiación , Caspasa 9/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/análisis , Puntos de Control de la Fase G2 del Ciclo Celular , Células Hep G2 , Humanos , Potencial de la Membrana Mitocondrial/efectos de la radiación
5.
Bioresour Technol ; 161: 221-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24704888

RESUMEN

Clostridium tyrobutyricum is well documented as a fermentation strain for the production of butyric acid. In this work, using high-energy carbon heavy ion irradiated C. tyrobutyricum, then butyric acid fermentation using glucose or alkali and acid pretreatments of Eucommia ulmoides Oliv. as a carbon source was carried out. Initially, the modes at pH 5.7-6.5 and 37°C were compared using a model medium containing glucose as a carbon source. When the 72gL(-1) glucose concentration was found to be the highest yield, the maximum butyric acid production from glucose increased significantly, from 24gL(-1) for the wild type strains to 37gL(-1) for the strain irradiated at 126AMeV and a dose of 35Gy and a 10(7)ions/pulse. By feeding 100gL(-1) acid pretreatments of E. ulmoides Oliv. into the fermentations, butyrate yields (5.8gL(-1)) and butyrate/acetate (B/A) ratio (4.32) were achieved.


Asunto(s)
Ácido Butírico/metabolismo , Clostridium tyrobutyricum/fisiología , Eucommiaceae/metabolismo , Carbono , Clostridium tyrobutyricum/efectos de la radiación , Estudios de Factibilidad , Fermentación , Iones Pesados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA