Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nutrients ; 16(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39275204

RESUMEN

Less than half of all patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) respond to chemotherapy, and the prognosis of PDAC is poor, which may be mediated by the gut microbiota. We investigated the clinical improvement effects of 1-kestose, a fructooligosaccharide, on PDAC chemotherapy in this single-center, randomized, controlled pilot trial conducted at Fujita Health University Hospital, which enrolled patients with PDAC. The trial included 1-kestose administration and non-administration groups. The 1-kestose group received 9 g of 1-kestose daily for 12 weeks, and their blood markers, imaging studies, physical findings, and gut microbiota were evaluated. In the 1-kestose administration group, the cancer marker CA19-9 significantly decreased, and there was a reduction in the neutrophil-to-lymphocyte ratio (NLR). There was also suppression of the reduction of albumin levels and of an increase in C-reactive protein. Additionally, Escherichia coli, which typically increases in PDAC, significantly decreased in the 1-kestose group. Thus, 1-kestose altered the gut microbiota and improved the prognostic factors for PDAC. Large-scale, long-term trials of 1-kestose interventions for PDAC are thus warranted to improve the prognosis of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Microbioma Gastrointestinal , Neoplasias Pancreáticas , Humanos , Proyectos Piloto , Carcinoma Ductal Pancreático/tratamiento farmacológico , Masculino , Femenino , Neoplasias Pancreáticas/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Anciano , Persona de Mediana Edad , Suplementos Dietéticos , Biomarcadores de Tumor/sangre , Pronóstico , Antígeno CA-19-9/sangre , Proteína C-Reactiva/análisis , Proteína C-Reactiva/metabolismo , Escherichia coli/efectos de los fármacos , Resultado del Tratamiento , Neutrófilos , Oligosacáridos/administración & dosificación , Oligosacáridos/farmacología
2.
J Nutr Sci Vitaminol (Tokyo) ; 70(4): 311-317, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39218692

RESUMEN

Chronic inflammation in adipose tissue is thought to contribute to insulin resistance, which involves the gut microbiota. Our previous studies have demonstrated that ingestion of 1-kestose can alter the gut microbiota composition, increase cecal butyrate levels, and improve insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Additionally, we found that 1-kestose supplementation ameliorated insulin resistance in obese rat models fed a high-fat diet (HFD), although the effects of 1-kestose on the abundance of inflammation-related gene in adipose tissue and gut microbiota composition in these rats were not explored. This study aimed to investigate the impact of 1-kestose on these parameters in HFD-fed rats, compared to OLETF rats. Male Sprague-Dawley rats were divided into two dietary groups, control or HFD, for 19 wk. Each group was further subdivided to receive either tap water or tap water supplemented with 2% (w/v) 1-kestose throughout the study. We evaluated gene expression in adipose tissue, as well as short-chain fatty acids (SCFAs) levels and microbial composition in the cecum contents. 1-Kestose intake restored the increased relative abundance of tumor necrosis factor (Tnf) mRNA in adipose tissue and the reduced level of butyrate in the cecum contents of HFD-fed rats to those observed in control diet-fed rats. Additionally, 1-kestose consumption changed the composition of the gut microbiota, increasing Butyricicoccus spp., decreasing UGC-005 and Streptococcus spp., in the cecum contents of HFD-fed rats. Our findings suggest that 1-kestose supplementation reduces adipose tissue inflammation and increases butyrate levels in the gut of HFD-fed rats, associated with changes in the gut microbiota composition, distinct from those seen in OLETF rats.


Asunto(s)
Tejido Adiposo , Ciego , Dieta Alta en Grasa , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Inflamación , ARN Mensajero , Ratas Sprague-Dawley , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , Inflamación/metabolismo , ARN Mensajero/metabolismo , Ratas , Ácidos Grasos Volátiles/metabolismo , Ciego/microbiología , Ciego/metabolismo , Resistencia a la Insulina , Ratas Endogámicas OLETF , Obesidad/metabolismo , Obesidad/microbiología , Suplementos Dietéticos , Butiratos/metabolismo
3.
Bioprocess Biosyst Eng ; 47(9): 1499-1514, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38904715

RESUMEN

The trisaccharide 1-kestose, a major constituent of commercial fructooligosaccharide (FOS) formulations, shows a superior prebiotic effect compared to higher-chain FOS. The plant sucrose:sucrose 1-fructosyltransferases (1-SST) are extensively used for selective synthesis of lower chain FOS. In this study, enhanced recombinant (r) 1-SST production was achieved in Komagataella phaffii (formerly Pichia pastoris) containing three copies of a codon-optimized Festuca arundinacea 1-SST gene. R1-SST production reached 47 U/mL at the shake-flask level after a 96-h methanol induction phase. A chemostat-based strain characterization methodology was adopted to assess the influence of specific growth rate (µ) on cell-specific r1-SST productivity (Qp) and cell-specific oxygen uptake rate (Qo) under two different feeding strategies across dilution rates from 0.02 to 0.05 h-1. The methanol-sorbitol co-feeding strategy significantly reduced Qo by 46 ± 2.4% compared to methanol-only feeding without compromising r1-SST productivity. Based on the data, a dilution rate of 0.025 h-1 was applied for continuous cultivation of recombinant cells to achieve a sustained r1-SST productivity of 5000 ± 64.4 U/L/h for 15 days.


Asunto(s)
Hexosiltransferasas , Proteínas Recombinantes , Saccharomycetales , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomycetales/crecimiento & desarrollo , Saccharomycetales/enzimología , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Hexosiltransferasas/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Carbono/metabolismo , Sacarosa/metabolismo , Reactores Biológicos , Metanol/metabolismo , Proteínas Bacterianas
4.
Biosci Microbiota Food Health ; 43(2): 110-119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562544

RESUMEN

How bifidobacteria colonize and survive in the intestine is not fully understood. The administration of bifidobacteria to conventional mice can be used to evaluate their ability to colonize the intestine in the presence of endogenous gut microbiota. However, human-derived bifidobacteria do not readily colonize the intestines of conventional mice, and although colonization by Bifidobacterium breve UCC2003 has been achieved, the viability of such populations requires improvement. Therefore, we aimed to establish a colonization system with human-derived bifidobacteria of high viability in conventional mice using Bifidobacterium longum subsp. longum 105-A. Lactose, raffinose, and 1-kestose were identified as the preferred carbohydrate sources for the growth of this strain in culture. The administration of B. longum 105-A to conventional BALB/c mice fed these carbohydrates showed that diets containing 6% (w/w) raffinose or 1-kestose facilitated colonization with >108 colony-forming units/g feces for 2 weeks. The population of this strain was more stable in the raffinose-fed group than in the 1-kestose-fed group. The ingestion of these prebiotics had a greater impact on the composition of the microbiota than the administration of B. longum 105-A. The ingestion of these prebiotics also increased the fecal concentrations of organic acids, which was indicative of greater intestinal fermentation. Collectively, we established a colonization system for B. longum 105-A with high viability in conventional mice by feeding the mice raffinose or 1-kestose. This system should be useful for elucidation of the mechanisms of colonization and survival of bifidobacteria in the intestines in the presence of the endogenous gut microbiota.

5.
J Microbiol Biotechnol ; 34(4): 911-919, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38379292

RESUMEN

Solar UVB irradiation cause skin photoaging by inducing the high expression of matrix metalloproteinase (MMPs) to inhibit the expression of Type1 procollagen synthesis. 1-Kestose, a natural trisaccharide, has been indicated to show a cytoprotective role in UVB radiation-induced-HaCaT cells. However, few studies have confirmed the anti-aging effects. In the present study, we evaluated the anti-photoaging and pathological mechanism of 1-kestose using Human keratinocytes (HaCaT) cells. The results found that 1-kestose pretreatment remarkably reduced UVB-generated reactive oxygen species (ROS) accumulation in HaCaT cells. 1-Kestose suppressed UVB radiation-induced MMPs expressions by blocking MAPK/AP-1 and NF-κB p65 translocation. 1-Kestose pretreatment increased Type 1 procollagen gene expression levels by activating TGF-ß/Smad signaling pathway. Taken together, our results demonstrate that 1-kestose may serve as a potent natural trisaccharide for inflammation and photoaging prevention.


Asunto(s)
Colágeno Tipo I , Transducción de Señal , Envejecimiento de la Piel , Trisacáridos , Rayos Ultravioleta , Humanos , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Células HaCaT , Inflamación/metabolismo , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Metaloproteinasas de la Matriz/metabolismo , Metaloproteinasas de la Matriz/genética , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Piel/metabolismo , Piel/efectos de los fármacos , Piel/efectos de la radiación , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Proteínas Smad/metabolismo , Factor de Transcripción AP-1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Rayos Ultravioleta/efectos adversos , Trisacáridos/farmacología
6.
J Vet Med Sci ; 86(2): 193-201, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38171739

RESUMEN

Despite the well-known potential health benefits of prebiotics and non-viable probiotics (paraprobiotics) in various animal species, research regarding their use in penguins is scarce. Our study aimed to investigate the impact of a combined administration of prebiotics and paraprobiotics (referred to here as "parasynbiotics") on the gut microbiome and overall health of Magellanic penguins (Spheniscus magellanicus). The parasynbiotics consisted of 1-kestose, which is a fructooligosaccharide comprising sucrose and fructose, and heat-killed Lactiplantibacillus plantarum FM8, isolated from pickled vegetables. It was administered to eight penguins aged <3 years (Young-group) and nine penguins aged >17 years (Adult-group) for 8 weeks. Results from 16S rRNA sequencing revealed that compared to baseline, parasynbiotic administration significantly decreased the relative abundance of intestinal Clostridiaceae_222000 in both groups and significantly increased that of Lactobacillaceae in the Young-group. Quantitative real-time polymerase chain reaction revealed a significant decrease in the plc gene levels encoding alpha-toxin of Clostridium perfringens in the Young-group after parasynbiotic administration (P=0.0078). In the Young-group, parasynbiotic administration significantly increased the plasma levels of total alpha-globulin (P=0.0234), which is associated with inflammatory responses. Furthermore, exposure of dendritic cells to heat-killed L. plantarum FM8 promoted the secretion of interleukin 10, a major anti-inflammatory cytokine. Overall, parasynbiotic administration enhanced the activity of gut Lactobacillaceae, decreased the levels of C. perfringens and its toxin encoding plc gene, and reduced inflammatory response in penguins. These results provide novel insights into the potential benefits of parasynbiotics for improving penguin health.


Asunto(s)
Prebióticos , Spheniscidae , Trisacáridos , Animales , Clostridium perfringens , ARN Ribosómico 16S
7.
J Gastroenterol Hepatol ; 39(3): 480-488, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38149305

RESUMEN

BACKGROUND AND AIM: Potassium-competitive acid blockers more strongly suppress the gastric acid barrier than proton pump inhibitors and cause dysbiosis. However, preventive measures in this regard have not been established. We aimed to evaluate whether 1-kestose, a known prebiotic, was effective at alleviating dysbiosis caused by potassium-competitive acid blockers. METHODS: Patients scheduled to undergo endoscopic resection for superficial gastroduodenal tumors were enrolled and randomized 1:1 to receive either 1-kestose or placebo. All patients were started on potassium-competitive acid blocker (vonoprazan 20 mg/day) and took 1-kestose 10 g/day or placebo (maltose) 5 g/day for 8 weeks. The primary outcome was the effect of 1-kestose on potassium-competitive acid blocker-induced alterations in the microbiome. The fecal microbiome was analyzed before and after potassium-competitive acid blocker treatment via MiSeq (16S rRNA gene V3-V4 region). RESULTS: Forty patients were enrolled, and 16 in each group were analyzed. In the placebo group, the Simpson index, an alpha diversity, was significantly decreased and relative abundance of Streptococcus was significantly increased by 1.9-fold. In the kestose group, the Simpson index did not change significantly and relative abundance of Streptococcus increased 1.3-fold, but this was not a significant change. In both groups, no adverse events occurred, ulcers were well healed, and pretreatment and posttreatment short-chain fatty acid levels did not differ. CONCLUSIONS: The potassium-competitive acid blocker caused dysbiosis in the placebo group; this effect was prevented by 1-kestose. Thus, 1-kestose may be useful in dysbiosis treatment.


Asunto(s)
Disbiosis , Microbiota , Pirroles , Sulfonamidas , Trisacáridos , Humanos , Disbiosis/etiología , ARN Ribosómico 16S , Proyectos Piloto , Inhibidores de la Bomba de Protones/efectos adversos , Potasio
8.
Physiol Rep ; 11(23): e15882, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38054526

RESUMEN

1-Kestose (KES), a dietary fiber and prebiotic carbohydrate, benefits various physiological functions. This study aimed to examine whether diets supplemented with KES over three consecutive generations could significantly affect some host physiological aspects, including behavioral phenotypes and gut microbial ecology. Mice that received KES-supplemented diets for three generations demonstrated increased activity compared with those fed diets lacking KES. Furthermore, the KES group showed increased striatal dopamine (DA) and serotonin (5-HT) levels. The observed increase in DA levels within the striatum was positively correlated with locomotor activity in the KES group but not in the control (CON) group. The α-diversities were significantly lower in the KES group compared to the CON group. The three-dimensional principal coordinate analysis revealed a substantial distinction between the KES and CON groups across each generation. At the genus level, most gut microbiota genera exhibited lower abundances in the KES group than in the CON group, except for Bifidobacteria and Akkermansia. Spearman's rank-order analysis indicated significant negative correlations between the striatal DA levels and α-diversity values. These findings suggest that prolonged supplementation with KES may stimulate increased locomotor activity along with elevated striatal DA levels, which are potentially associated with KES-induced alterations in the gut microbiota.


Asunto(s)
Dopamina , Microbioma Gastrointestinal , Ratones , Animales , Masculino , Trisacáridos , Prebióticos
9.
Nutrients ; 15(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513693

RESUMEN

Constipation is common in children and can significantly affect quality of life. Prebiotics are reportedly helpful for constipation in adults, but few studies have examined their use in young children. In this study, the effect of 1-kestose (kestose), which has excellent bifidobacterial growth properties, on constipation in kindergarten children (n = 11) was compared with that of maltose (n = 12) in a randomized, double-blind study. Three grams of kestose per day for 8 weeks did not affect stool properties, but significantly increased the number of defecations per week (Median; 3 → 4 times/week, p = 0.017, effect size = 0.53). A significant decrease in Intestinibacter, a trend toward increased bifidobacteria, and a trend toward decreased Clostridium sensu stricto were observed after kestose ingestion, while concentrations of short-chain fatty acids in stools were unchanged.


Asunto(s)
Defecación , Calidad de Vida , Adulto , Humanos , Niño , Preescolar , Proyectos Piloto , Método Doble Ciego , Estreñimiento/tratamiento farmacológico , Estreñimiento/microbiología , Heces/microbiología , Resultado del Tratamiento
10.
Biosci Biotechnol Biochem ; 87(9): 981-990, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37280168

RESUMEN

The trisaccharide 1-kestose, a major constituent of fructooligosaccharide, has strong prebiotic effects. We used high-performance liquid chromatography and 1H nuclear magnetic resonance spectroscopy to show that BiBftA, a ß-fructosyltransferase belonging to glycoside hydrolase family 68, from Beijerinckia indica subsp. indica catalyzes transfructosylation of sucrose to produce mostly 1-kestose and levan polysaccharides. We substituted His395 and Phe473 in BiBftA with Arg and Tyr, respectively, and analyzed the reactions of the mutant enzymes with 180 g/L sucrose. The ratio of the molar concentrations of glucose and 1-kestose in the reaction mixture with wild-type BiBftA was 100:8.1, whereas that in the reaction mixture with the variant H395R/F473Y was 100:45.5, indicating that H395R/F473Y predominantly accumulated 1-kestose from sucrose. The X-ray crystal structure of H395R/F473Y suggests that its catalytic pocket is unfavorable for binding of sucrose while favorable for transfructosylation.


Asunto(s)
Proteínas Bacterianas , Hexosiltransferasas , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Sacarosa/metabolismo
11.
J Nutr Sci Vitaminol (Tokyo) ; 69(2): 150-154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37121725

RESUMEN

By comparing germ-free mice and specific pathogen-free mice, we recently demonstrated that the presence of gut commensals upregulates microRNA-200 family members in lamina propria leukocytes (LPL) of the murine large intestine. The present study tested whether the consumption of 1-kestose (KES), an indigestible oligosaccharide that alters gut microbiota composition, influences the microRNA expression in the LPL. Supplementation of KES (4%) in drinking water for 2 wk increased the levels of miR-182-5p, -205-5p, -290a-5p, miR-200 family members (miR-141-3p, -200a-3p, -200b-3p, -200c-3p, and -429-3p) as well as miR-192/215 family members (miR-192-5p, -194-5p, and -215-5p) as determined by microarray analysis in large intestinal LPL of C57BL/6 mice. Quantitative reverse transcription-PCR further confirmed the increase in miR-192-5p, -194-5p, -200a-3p, -200b-3p, -200c-3p, -205-5p, and 215-5p. KES consumption significantly increased Bifidobacterium pseudolongum in the cecal contents. In a separate experiment, intragastric administration of B. pseudolongum (109 CFU/d) for 7 d increased the levels of miR-182-5p, -194-5p, and -200a-3p and tended to increase the levels of miR-200b-3p, -215-5p, and -429-3p. These results suggest that dietary KES influences miRNA expression in the large intestinal LPL, which may be associated with the increased population of B. pseudolongum.


Asunto(s)
MicroARNs , Ratones , Animales , MicroARNs/genética , Ratones Endogámicos C57BL , Membrana Mucosa/metabolismo , Ciego/metabolismo
12.
Aliment Pharmacol Ther ; 57(11): 1249-1257, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36644995

RESUMEN

BACKGROUND: Ulcerative colitis involves an excessive immune response to intestinal bacteria. Whether administering prebiotic 1-kestose is effective for active ulcerative colitis remains controversial. AIMS: This randomised, double-blind, placebo-controlled pilot trial investigated the efficacy of 1-kestose against active ulcerative colitis. METHODS: Forty patients with mild to moderate active ulcerative colitis were randomly treated with 1-kestose (N = 20) or placebo (maltose, N = 20) orally for 8 weeks in addition to the standard treatment. The Lichtiger clinical activity index and Ulcerative Colitis Endoscopic Index of Severity were determined. Faecal samples were analysed to evaluate the gut microbiome and metabolites. RESULTS: The clinical activity index at week 8 was significantly lower in the 1-kestose group than in the placebo group (3.8 ± 2.7 vs. 5.6 ± 2.1, p = 0.026). Clinical remission and response rates were higher in the 1-kestose group than in the placebo group (remission: 55% vs. 20%, p = 0.048; response: 60% vs. 25%, p = 0.054). The Ulcerative Colitis Endoscopic Index of Severity at week 8 was not significantly different (2.8 ± 1.6 vs. 3.5 ± 1.6, p = 0.145). Faecal analysis showed significantly reduced alpha-diversity in the 1-kestose group, with a decreased relative abundance of several bacteria, including Ruminococcus gnavus group. The short-chain fatty acid levels were not significantly different between the groups. The incidence of adverse events was comparable between the groups. DISCUSSION: Oral 1-kestose is well tolerated and provides clinical improvement for patients with mild to moderate ulcerative colitis through modulation of the gut microbiome.


Asunto(s)
Colitis Ulcerosa , Humanos , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Antiinflamatorios no Esteroideos/uso terapéutico , Proyectos Piloto , Método Doble Ciego , Suplementos Dietéticos , Resultado del Tratamiento , Inducción de Remisión
13.
Foods ; 11(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35885297

RESUMEN

Thermal degradation kinetics of fructooligosaccharides (FOS) in defatted rice bran were studied at temperatures of 90, 100, and 110 °C. FOS extracted from rice bran and dissolved in buffers at pH values of 5.0, 6.0, and 7.0 were prepared for the thermal treatments. The residual FOS (including 1-kestose (GF2), nystose (GF3), and 1F-fructofuranosylnystose (GF4)) contents were determined using the ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method. The results showed that the thermal degradation kinetics of GF2, GF3, and GF4 followed a first-order kinetic model. Thermal degradation rate constants (k values) of GF2, GF3, and GF4 at different temperature and pH values were estimated using the first-order kinetic equation and SAS 9.1. As a result, these k values decreased gradually as the pH of the sample increased from 5.0 to 7.0. The Arrhenius model was applied to describe the heat dependence of the k-values. The activation energy (Ea) was calculated for each case of GF2, GF3, and GF4 degradation at pH values of 5.0, 6.0, and 7.0. The result showed that rice bran FOS is very thermostable at neutral pH while more labile at acidic pH.

14.
Enzyme Microb Technol ; 160: 110085, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35752090

RESUMEN

Microbial inulosucrase as a transfructosylation tool has been used to produce inulin and inulin-type fructooligosaccharides with various polymerization degrees. Tailor-made oligosaccharides could be generated by inulosucrase via chain length modulation. In this study, a semi-rational design based on the modeled structure of Lactobacillus reuteri 121 inulosucrase was carried out to screen and construct variants. The residues Arg541 and Arg544 were determined to be significant to the product chain elongation of L. reuteri 121 inulosucrase. The variant R544W altered the product specificity of inulosucrase and produced short-chain fructooligosaccharides with 1-kestose as the main component. Molecular dynamic simulations verified an increased binding free energy of variant R544W with 1-kestose than the wild-type enzyme with 1-kestose. After optimization, 1-kestose and total short-chain fructooligosaccharides production reached approximately 206 g/L and 307 g/L, respectively. This study suggests the great potential of variant R544W in the biotransformation from sucrose to functional sugar.


Asunto(s)
Hexosiltransferasas , Limosilactobacillus reuteri , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Inulina , Limosilactobacillus reuteri/genética , Oligosacáridos/metabolismo , Sacarosa/metabolismo , Trisacáridos
15.
Appl Microbiol Biotechnol ; 106(7): 2455-2470, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35267055

RESUMEN

Fructooligosaccharide is a mixture of mostly the trisaccharide 1-kestose (GF2), tetrasaccharide nystose (GF3), and fructosyl nystose (GF4). Enzymes that hydrolyze GF3 may be useful for preparing GF2 from the fructooligosaccharide mixture. A ß-fructofuranosidase belonging to glycoside hydrolase family 32 (GH32) from the honeybee gut bacterium Frischella perrara (FperFFase) was expressed in Escherichia coli and purified. The time course of the hydrolysis of 60 mM sucrose, GF2, and GF3 by FperFFase was analyzed, showing that the hydrolytic activity of FperFFase for trisaccharide GF2 was lower than those for disaccharide sucrose and tetrasaccharide GF3. The crystal structure of FperFFase and its structure in complex with fructose were determined. FperFFase was found to be structurally homologous to bifidobacterial ß-fructofuranosidases even though bifidobacterial enzymes preferably hydrolyze GF2 and the amino acid residues interacting with fructose at subsite - 1 are mostly conserved between them. A proline residue was inserted between Asp298 and Ser299 using site-directed mutagenesis, and the activity of the variant 298P299 was measured. The ratio of activities for 60 mM GF2/GF3 by wild-type FperFFase was 35.5%, while that of 298P299 was 23.6%, indicating that the structure of the loop comprising Trp297-Asp298-Ser299 correlated with the substrate preference of FperFFase. The crystal structure also shows that a loop consisting of residues 117-127 is likely to contribute to the substrate binding of FperFFase. The results obtained herein suggest that FperFFase is potentially useful for the manufacture of GF2. KEY POINTS: • Frischella ß-fructofuranosidase hydrolyzed nystose more efficiently than 1-kestose. • Trp297-Asp298-Ser299 was shown to be correlated with the substrate preference. • Loop consisting of residues 117-127 appears to contribute to the substrate binding.


Asunto(s)
Oligosacáridos , beta-Fructofuranosidasa , Animales , Abejas , Fructosa , Gammaproteobacteria , Oligosacáridos/metabolismo , Sacarosa , Trisacáridos/metabolismo , beta-Fructofuranosidasa/metabolismo
16.
Br J Nutr ; 127(4): 513-525, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-33849681

RESUMEN

SCFA increase serotonin (5-hydroxytryptamine, 5-HT) synthesis and content in the colon in vitro and ex vivo, but little is known in vivo. We tested whether dietary indigestible saccharides, utilised as a substrate to produce SCFA by gut microbiota, would increase colonic 5-HT content in mice. Male C57BL/6J mice were fed a purified diet and water supplemented with 4 % (w/v) 1-kestose (KES) for 2 weeks. Colonic 5-HT content and enterochromaffin (EC) cell numbers were lower in mice supplemented with KES than those without supplementation, while monoamine oxidase A activity and mRNA levels of tryptophan hydroxylase 1 (Tph1), chromogranin A (Chga), Slc6a4 and monoamine oxidase A (Maoa) genes in the colonic mucosa, serum 5-HT concentration and total 5-HT content in the colonic contents did not differ between groups. Caecal acetate concentration and Bifidobacterium pseudolongum population were higher in KES-supplemented mice. Similar trends were observed in mice supplemented with other indigestible saccharides, that is, fructo-oligosaccharides, inulin and raffinose. Intragastric administration of live B. pseudolongum (108 colony-forming units/d) for 2 weeks reduced colonic 5-HT content and EC cell numbers. These results suggest that changes in synthesis, reuptake, catabolism and overflow of 5-HT in the colonic mucosa are not involved in the reduction of colonic 5-HT content by dietary indigestible saccharides in mice. We propose that gut microbes including B. pseudolongum could contribute to the reduction of 5-HT content in the colonic mucosa via diminishing EC cells.


Asunto(s)
Colon , Serotonina , Animales , Bifidobacterium , Colon/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Monoaminooxidasa/metabolismo , Serotonina/metabolismo
17.
Enzyme Microb Technol ; 154: 109960, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34923315

RESUMEN

Inulosucrase (ISC) and levansucrase (LSC) utilise sucrose and produce inulin- and levan-type fructans, respectively. This study aims to propose a new strategy to improve levan-type fructooligosaccharide (L-FOS) production. The effect of ISC/ LSC -mixed reaction was elucidated on L-FOS production. The presence of ISC in the LSC reaction significantly leads to the higher production of L-FOSs as the main products. Furthermore, the different ratios between ISC and LSC affected the distribution of L-FOSs. A greater amount of ISC compared to LSC promoted the synthesis of short-chain L-FOSs. Conversely, when LSC was increased, the synthesis of longer-chain L-FOSs was enhanced. The addition of trisaccharide mixtures obtained from either a single ISC or LSC reaction could enhance L-FOSs synthesis in the LSC reaction. Analysis of these trisaccharides revealed that most species of the oligosaccharides were similar, with 1-kestose being the major one. The supplement of only 1-kestose in the LSC reaction showed similar results to those of the reaction in the presence of trisaccharide mixtures. Moreover, the results were supported by molecular dynamics simulations. This work not only provides an improvement in L-FOS production but also revealed and supported some insights into the mechanism of fructansucrases.


Asunto(s)
Fructanos , Oligosacáridos , Hexosiltransferasas , Sacarosa
18.
Foods ; 10(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34945711

RESUMEN

Fructosyl oligosaccharides, including fructo-oligosaccharide (FOS), are gaining popularity as functional oligosaccharides and have been found in various natural products. Our previous study suggested that maple syrup contains an unidentified fructosyl oligosaccharide. Because these saccharides cannot be detected with high sensitivity using derivatization methods, they must be detected directly. As a result, an analytical method based on charged aerosol detection (CAD) that can detect saccharides directly was optimized in order to avoid relying on these structures and physical properties to clarify the profile of fructosyl oligosaccharides in maple syrup. This analytical method is simple and can analyze up to hepta-saccharides in 30 min. This analytical method was also reliable and reproducible with high validation values. It was used to determine the content of saccharides in maple syrup, which revealed that it contained not only fructose, glucose, and sucrose but also FOS such as 1-kestose and nystose. Furthermore, we discovered a fructosyl oligosaccharide called neokestose in maple syrup, which has only been found in a few natural foods. These findings help to shed light on the saccharides profile of maple syrup.

19.
Plant Foods Hum Nutr ; 76(4): 487-493, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34668149

RESUMEN

Yacon (Smallanthus sonchifolius (Poepp.) H. Robinson) leaves is traditionally consumed as herbal tea in many countries including Indonesia. This plant's antidiabetic properties have been extensively researched, but studies on the responsible active compound identification are scarce. Information on the active compounds is critical for the consistency of Yacon herbal tea quality. The aim of this study was to identify α-glucosidase inhibitors in Indonesian Yacon leaves grown in two different locations using FTIR- and LC-MS/MS-based metabolomics in combination with in silico technique. Yacon leaves ethanol (50 and 95%) and water extracts were tested for α-glucosidase inhibitory activity, with the 95% ethanol extract being the most active. Geographical origins were found to have no major impact on the activity. In parallel, chemical profile of Yacon leaves extract was determined using FTIR and LC-MS/MS. Orthogonal Projection to Latent Structure (OPLS) was used to analyze both sets of data. OPLS analysis of FTIR data showed that compounds associated to α-glucosidase inhibitor activity included those with functional groups -OH, stretched CH, carbonyl, and alkene. It was consistent with the result of OPLS analysis of LC-MS/MS data, which revealed that based on their VIP and Y-related coefficient value, nystose, 1-kestose, luteolin-3'-7-di-O-glucoside, and 1,3-O-dicaffeoilquinic acid isomers, strongly linked to Yacon's α-glucosidase inhibitor activity. In silico study supported these findings, revealing that the four compounds were potent α-glucosidase inhibitors with docking score in the range of - 100.216 to - 115.657 kcal/mol, which are similar to acarbose (- 115.774 kcal/mol) as a reference drug.


Asunto(s)
Asteraceae , Inhibidores de Glicósido Hidrolasas , Cromatografía Liquida , Inhibidores de Glicósido Hidrolasas/farmacología , Metabolómica , Extractos Vegetales/farmacología , Hojas de la Planta , Espectrometría de Masas en Tándem
20.
Biosci Microbiota Food Health ; 40(3): 150-155, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34285860

RESUMEN

Sarcopenia causes functional disorders and decreases the quality of life. Thus, it has attracted substantial attention in the aging modern world. Dysbiosis of the intestinal microbiota is associated with sarcopenia; however, it remains unclear whether prebiotics change the microbiota composition and result in the subsequent recovery of muscle atrophy in elderly patients with sarcopenia. This study aimed to assess the effects of prebiotics in super-elderly patients with sarcopenia. We analyzed the effects of 1-kestose on the changes in the intestinal microbiota and body composition using a next-generation sequencer and a multi-frequency bioimpedance analysis device. The Bifidobacterium longum population was significantly increased in the intestine after 1-kestose administration. In addition, in all six patients after 12 weeks of 1-kestose administration, the skeletal muscle mass index was greater, and the body fat percentage was lower. This is the first study to show that administration of a prebiotic increased the population of B. longum in the intestinal microbiota and caused recovery of muscle atrophy in super-elderly patients with sarcopenia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA