Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687082

RESUMEN

This paper presents the photophysical and biological properties of eight 3-imino-1,8-naphthalimides. The optical properties of the compounds were investigated in the solvents that differed in their polarity (dichloromethane, acetonitrile, and methanol), including three methods of sample preparation using different pre-dissolving solvents such as dimethyl sulfoxide or chloroform. In the course of the research, it was found that there are strong interactions between the tested compounds and DMSO, which was visible as a change in the maximum emission band (λem) of the neat 3-imino-1,8-naphthalimides (λem = 470-480 nm) and between the compounds and DMSO (λem = 504-514 nm). The shift of the emission maximum that was associated with the presence of a small amount of DMSO in the sample was as much as 41 nm. In addition, the susceptibility of imines to hydrolysis in the methanol/water mixture with increasing water content and in the methanol/water mixture (v/v; 1:1) in the pH range from 1 to 12 was discussed. The studies showed that the compounds are hydrolysed in the CH3OH/H2O system in an acidic environment (pH in the range of 1 to 4). In addition, it was found that partial hydrolysis occurs in systems with an increased amount of water, and its degree may depend on the type of substituent on the imine bond. The compounds tended to quench the emission (ACQ) in the aggregated state and increase the emission related to the protonation of the imine bond. Moreover, it was found that the substituent in the imine bonds influenced a compound's individual photophysical properties. Biological tests, including cytotoxicity studies and cellular localisation, were also performed for all of the molecules. All of the tested compounds exhibited green fluorescence in the MCF-7 cells and showed co-localisation in the mitochondria, endoplasmic reticulum, and lysosome. The obtained photophysical and biological results indicate the promising potential use of the tested compounds as cellular dyes.


Asunto(s)
Dimetilsulfóxido , Metanol , Naftalimidas/farmacología , Colorantes Fluorescentes , Solventes , Iminas , Ionóforos
2.
Sensors (Basel) ; 23(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37299994

RESUMEN

A new water-soluble poly(propylene imine) dendrimer (PPI) modified with 4-sulfo-1,8-naphthalimid units (SNID) and its related structure monomer analog (SNIM) has been prepared by a simple synthesis. The aqueous solution of the monomer exhibited aggregation-induced emission (AIE) at 395 nm, while the dendrimer emitted at 470 nm due to an excimer formation beside the AIE at 395 nm. Fluorescence emission of the aqueous solution of either SNIM or SNID was significantly affected by traces of different miscible organic solvents, and the limits of detection were found to be less than 0.05% (v/v). Moreover, SNID exhibited the function to execute molecular size-based logic gates where it mimics XNOR and INHIBIT logic gates using water and ethanol as inputs and the AIE/excimer emissions as outputs. Hence, the concomitant execution of both XNOR and INHIBIT enables SNID to mimic digital comparators.


Asunto(s)
Dendrímeros , Agua , Agua/química , Dendrímeros/química , Naftalimidas/química , Solventes/química
3.
J Enzyme Inhib Med Chem ; 38(1): 2171028, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36715272

RESUMEN

The synthesis of carborane-1,8-naphthalimide conjugates and evaluation of their DNA-binding ability and anticancer activity were performed. A series of 4-carboranyl-3-nitro-1,8-naphthalimide derivatives, mitonafide and pinafide analogs, were synthesised via amidation and reductive amination reactions, and their calf thymus DNA (ct-DNA)-binding properties were investigated using circular dichroism, UV-vis spectroscopy, and thermal denaturation. Results showed that conjugates 34-37 interacted very strongly with ct-DNA (ΔTm = 10.00-13.00 °C), indicating their ability to intercalate with DNA, but did not inhibit the activity of topoisomerase II. The conjugates inhibited the cell growth of the HepG2 cancer cell line in vitro. The same compounds caused the G2M phase arrest. Cell lines treated with these conjugates showed an increase in reactive oxygen species, glutathione, and Fe2+ levels, lipid peroxidation, and mitochondrial membrane potential relative to controls, indicating the involvement of ferroptosis. Furthermore, these conjugates caused lysosomal membrane permeabilization in HepG2 cells but not in MRC-5 cells.


Asunto(s)
Antineoplásicos , Ferroptosis , Neoplasias , Sustancias Intercalantes , Antineoplásicos/química , Naftalimidas , Línea Celular , ADN/química , Lisosomas/metabolismo , Línea Celular Tumoral
4.
Molecules ; 27(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36144479

RESUMEN

This study addresses the need for antibacterial medication that can overcome the current problems of antibiotics. It does so by suggesting two 1,8-naphthalimides (NI1 and NI2) containing a pyridinium nucleus become attached to the imide-nitrogen atom via a methylene spacer. Those fluorescent derivatives are covalently bonded to the surface of a chloroacetyl-chloride-modified cotton fabric. The iodometric method was used to study the generation of singlet oxygen (1O2) by irradiation of KI in the presence of monomeric 1,8-naphthalimides and the dyed textile material. Both compounds generated reactive singlet oxygen, and their activity was preserved even after they were deposited onto the cotton fabric. The antibacterial activity of NI1 and NI2 in solution and after their covalent bonding to the cotton fabric was investigated. In vitro tests were performed against the model gram-positive bacteria B. cereus and gram-negative P. aeruginosa bacteria in dark and under light iradiation. Compound NI2 showed higher antibacterial activity than compound NI1. The light irradiation enhanced the antimicrobial activity of the compounds, with a better effect achieved against B. cereus.


Asunto(s)
Fotoquimioterapia , Antibacterianos/farmacología , Cloruros , Bacterias Gramnegativas , Naftalimidas/farmacología , Nitrógeno , Oxígeno Singlete
5.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35562989

RESUMEN

In the present study, we continue our work related to the synthesis of 1,8-naphthalimide and carborane conjugates and the investigation of their anticancer activity and DNA-binding ability. For this purpose, a series of 4-carboranyl-1,8-naphthalimide derivatives, mitonafide, and pinafide analogs were synthesized using click chemistry, reductive amination, amidation, and Mitsunobu reactions. The calf thymus DNA (ct-DNA)-binding properties of the synthesized compounds were investigated by circular dichroism (CD), UV-vis spectroscopy, and thermal denaturation experiments. Conjugates 54-61 interacted very strongly with ct-DNA (∆Tm = 7.67-12.33 °C), suggesting their intercalation with DNA. They were also investigated for their in vitro effects on cytotoxicity, cell migration, cell death, cell cycle, and production of reactive oxygen species (ROS) in a HepG2 cancer cell line as well as inhibition of topoisomerase IIα activity (Topo II). The cytotoxicity of these eight conjugates was in the range of 3.12-30.87 µM, with the lowest IC50 value determined for compound 57. The analyses showed that most of the conjugates could induce cell cycle arrest in the G0/G1 phase, inhibit cell migration, and promote apoptosis. Two conjugates, namely 60 and 61, induced ROS production, which was proven by the increased level of 2'-deoxy-8-oxoguanosine in DNA. They were specifically located in lysosomes, and because of their excellent fluorescent properties, they could be easily detected within the cells. They were also found to be weak Topo II inhibitors.


Asunto(s)
Antineoplásicos , Sustancias Intercalantes , Antineoplásicos/química , Apoptosis , Línea Celular Tumoral , ADN/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Sustancias Intercalantes/química , Estructura Molecular , Naftalimidas/química , Especies Reactivas de Oxígeno/farmacología , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/farmacología
6.
Materials (Basel) ; 14(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34639899

RESUMEN

A new series of 1,8-naphtalimides containing an imine bond at the 3-position of the naphthalene ring was synthesized using 1H, 13C NMR, FTIR, and elementary analysis. The impact of the substituent in the imine linkage on the selected properties and bioimaging of the synthesized compounds was studied. They showed a melting temperature in the range of 120-164 °C and underwent thermal decomposition above 280 °C. Based on cyclic and differential pulse voltammetry, the electrochemical behavior of 1,8-naphtalimide derivatives was evaluated. The electrochemical reduction and oxidation processes were observed. The compounds were characterized by a low energy band gap (below 2.60 eV). Their photoluminescence activities were investigated in solution considering the solvent effect, in the aggregated and thin film, and a mixture of poly(N-vinylcarbazole) (PVK) and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD) (50:50 wt.%). They demonstrated low emissions due to photoinduced electron transport (PET) occurring in the solution and aggregation, which caused photoluminescence quenching. Some of them exhibited light emission as thin films. They emitted light in the range of 495 to 535 nm, with photoluminescence quantum yield at 4%. Despite the significant overlapping of its absorption range with emission of the PVK:PBD, incomplete Förster energy transfer from the matrix to the luminophore was found. Moreover, its luminescence ability induced by external voltage was tested in the diode with guest-host configuration. The possibility of compound hydrolysis due to the presence of the imine bond was also discussed, which could be of importance in biological studies that evaluate 3-imino-1,8-naphatalimides as imaging tools and fluorescent materials for diagnostic applications and molecular bioimaging.

7.
Materials (Basel) ; 14(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064056

RESUMEN

In this paper, six novel symmetrical bis-(imino-1,8-naphthalimides) differing in core and N-substituent structure were synthesized, and their thermal (TGA, DSC), optical (UV-Vis, PL), electrochemical (DPV, CV) properties were evaluated. The compounds were stable to 280 °C and could be transferred into amorphous materials. Electrochemical investigations showed their ability to occur reductions and oxidations processes. They exhibited deep LUMO levels of about -3.22 eV and HOMO levels above -5.80 eV. The optical investigations were carried out in the solutions (polar and non-polar) and in films and blends with PVK:PBD. Bis-(imino-1,8-naphthalimides) absorbed electromagnetic radiation in the range of 243-415 nm and emitted light from blue to yellow. Their capacity for light emission under voltage was preliminarily tested in devices with an active layer consisting of a neat compound and a blend with PVK:PBD. The diodes emitted green or red light.

8.
Sensors (Basel) ; 20(14)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668630

RESUMEN

Three new 1,8-naphthalimide derivatives M1-M3 with different substituents at the C-4 position have been synthesized and characterized. Their photophysical properties have been investigated in organic solvents of different polarity, and their fluorescence intensity was found to depend strongly on both the polarity of the solvents and the type of substituent at C-4. For compounds M1 and M2 having a tertiary amino group linked via an ethylene bridge to the chromophore system, high quantum yield was observed only in non-polar media, whereas for compound M3, the quantum efficiency did not depend on the medium polarity. The effect of different metal ions (Ag+, Ba2+, Cu2+, Co2+, Mg2+, Pb2+, Sr2+, Fe3+, and Sn2+) on the fluorescence emission of compounds M1 and M2 was investigated. A significant enhancement has been observed in the presence of Ag+, Pb2+, Sn2+, Co2+, Fe3+, as this effect is expressed more preferably in the case of M2. Both compounds have shown significant pH dependence, as the fluorescence intensity was low in alkaline medium and has been enhanced more than 20-fold in acidic medium. The metal ions and pH do not affect the fluorescence intensity of M3. Density-functional theory (DFT) and Time-dependent density-functional theory (TDDFT) quantum chemical calculations are employed in deciphering the intimate mechanism of sensor mechanism. The functional properties of M1 and M2 were compared with polyamidoamine (PAMAM) dendrimers of different generations modified with 1,8-naphthalimide.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 238: 118442, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32408229

RESUMEN

A series of 3-amino-N-substituted-1,8-naphthalimides and their salicylic Schiff base derivatives were synthesized. The structure of the obtained compounds was confirmed using 1H and 13C NMR, FT-IR spectroscopy and elemental analysis and COSY and HMQC for the representative molecules. The photophysical (UV-Vis, PL) and biological properties of all of the prepared compounds were studied. It was found that the amine with the n-hexyl group in EtOH had the highest PL quantum yield (Ф = 85%) compared to the others. Moreover, the chelating properties of the azomethines with the n-hexyl group (1a, 1b, 1c) were tested against various cations (Al3+, Ba2+, Co2+, Cu2+, Cr3+, Fe2+, Fe3+, Mn2+, Ni2+, Pb2+, Sr2+ and Zn2+) in an acetonitrile, acetone and PBS/AC mixture. Compounds that contained the electron withdrawing groups (-Br, -I) had the ability to chelate most of the studied cations, while the unsubstituted derivative chelated only the trivalent cations such as Al3+, Cr3+ and Fe3+ in acetonitrile. The effect of the environment on the keto-enol tautomeric equilibrium was also demonstrated, especially in the case of the derivative with a bromine atom. The biological studies showed that the tested molecules had no cytotoxicity. Additionally, the ability to image intracellular organelles such as the mitochondria and endoplasmic reticulum was revealed. The crucial role of the hydrolysis of imines for cellular imaging was presented.


Asunto(s)
Colorantes Fluorescentes/química , Naftalimidas/química , Retículo Endoplásmico/ultraestructura , Colorantes Fluorescentes/síntesis química , Células HCT116 , Humanos , Hidrólisis , Microscopía Fluorescente/métodos , Mitocondrias/ultraestructura , Naftalimidas/síntesis química , Imagen Óptica/métodos
10.
Anticancer Agents Med Chem ; 19(10): 1276-1284, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30848212

RESUMEN

BACKGROUND: The 1,8-Naphthalimides constitute an important class of biologically active, DNAbinding compounds. There are no available data on the synthesis of 1,8-naphthalimide derivatives with nonprotein amino acids and their biological activity. The aim of this paper was to determine the synthesis, structural characterization and cytotoxic activity of new 1-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)cycloalkane-1- carboxylic acids with 5-, 6-, 7-, 8- and 12-membered rings as well as 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)- yl)adamantane-2-carboxylic acid and 1-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-1,2,3,4-tetrahydronaphthalene- 1-carboxylic acid. METHODS: The target compounds were obtained by an interaction of 1,8-naphthalic anhydride with a series of non-protein amino acids. The optimized geometry and harmonic vibrational frequencies have been calculated by DFT employing B3LYP functional using 6-31G(d,p) basis set. An ab initio (MP2 and Hartee-Fock) and DFT (different functionals) using several basis sets have been applied for NMR calculations. The cytotoxic effects of the synthesized compounds are assessed against two human tumor cell lines, namely K-562 (chronic myeloid leukemia) and HUT-78 (cutaneous T-cell lymphoma) after 72 h exposure, using the MTT-dye reduction assay. The apoptogenic effects and the ability to modulate the NFκB-signaling pathways were determined using commercially available ELISA kits. RESULTS: All compounds inhibited the growth of malignant cells at micromolar concentrations whereby compound 4b (1-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)cyclohexane-1-carboxylic acid) demonstrated superior activity in both cell lines with IC50 values comparable to those of the reference anticancer drug melphalan. CONCLUSION: New 1,8-naphthalimide derivatives with non-protein amino acids were successfully synthesized. Quantum-chemical calculations were performed to elucidate the structure of the newly synthesized compounds. There is a proper alignment between theoretical and experimental results. The cytotoxicity of the synthesized products against two human tumor cell lines, namely K-562 and HUT-78 was evaluated. All compounds inhibited the growth of malignant cells at micromolar concentrations. The pharmacodynamics evaluation of compound 4b showed that its cytotoxicity is mediated by induction of apoptosis and inhibition of NFκB-signaling.


Asunto(s)
Aminoácidos/química , Antineoplásicos/síntesis química , Naftalimidas/síntesis química , Naftalimidas/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Teoría Funcional de la Densidad , Humanos , Modelos Moleculares , Estructura Molecular
11.
Eur J Med Chem ; 159: 393-422, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30312931

RESUMEN

In this review, we describe a detailed investigation about the structural variations and relative activity of 1,8-naphthalimide based intercalators and anticancer agents. The 1,8-naphthalimides binds to the DNA via intercalation, and exert their antitumor activities through Topoisomerase I/II inhibition, photoinduced DNA damage or related mechanism. Here, our discussion focused on works published over the last ten years (2007-2017) related to therapeutic applications, in the order of cancer treatment followed by other properties of 1,8-naphthalimides. In preparing for this review, we considered that several seminal reviews have appeared over the last fifteen years and focused on closely related subjects, however, none of them is exhaustive.


Asunto(s)
Antineoplásicos/farmacología , ADN de Neoplasias/efectos de los fármacos , Sustancias Intercalantes/farmacología , Naftalimidas/farmacología , Neoplasias/tratamiento farmacológico , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa II/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Daño del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Neoplasias/química , Humanos , Sustancias Intercalantes/química , Naftalimidas/química , Neoplasias/patología , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa II/química
12.
Talanta ; 188: 316-324, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30029382

RESUMEN

Lysosome fluorescent imaging has been widely used in the field of biological staining and diagnostics, which plays a key role in understanding intracellular metabolism and various physiological processes. However, for most currently used small-molecule lysotrackers, the photostability is often unsatisfactory when used for long-term and real-time visualization of lysosomal dynamics. Herein, we reported a new lysosome-targetable photostable fluorescent probe (i.e. MPL-NPA), and results showed that MPL-NAP possesses superior photostability, appreciable tolerance to pH change, low cytotoxicity and high lysosome targeting ability. These findings confirm that MPL-NAP is a well-suited imaging agent for targeting lysosome and enables long-term and real-time monitor of lysosome morphological changes under physiological processes.


Asunto(s)
Colorantes Fluorescentes/farmacología , Lisosomas/metabolismo , Morfolinas/farmacología , Naftalimidas/farmacología , Animales , Apoptosis/fisiología , Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Estabilidad de Medicamentos , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/efectos de la radiación , Colorantes Fluorescentes/toxicidad , Humanos , Microscopía Confocal , Microscopía Fluorescente , Morfolinas/síntesis química , Morfolinas/efectos de la radiación , Morfolinas/toxicidad , Naftalimidas/síntesis química , Naftalimidas/efectos de la radiación , Naftalimidas/toxicidad , Ratas
13.
Biosens Bioelectron ; 71: 313-321, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25930001

RESUMEN

Monitoring mitochondria morphological changes temporally and spatially exhibits significant importance for diagnosing, preventing and treating various diseases related to mitochondrial dysfunction. However, the application of commercially available mitochondria trackers is limited due to their poor photostability. To overcome these disadvantages, we designed and synthesized a mitochondria-localized fluorescent probe by conjugating 1,8-naphthalimide with triphenylphosphonium (i.e. NPA-TPP). The structure and characteristic of NPA-TPP was characterized by UV-vis, fluorescence spectroscopy, (1)HNMR, (13)CNMR, FTIR, MS, etc. The photostability and cell imaging were performed on the laser scanning confocal microscopy. Moreover, the cytotoxicity of NPA-TPP on cells was evaluated using (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The results showed that NPA-TPP not only has high sensitivity and specificity to mitochondria, but also exhibits super-high photostability, negligible cytotoxicity and good water solubility. In short, NPA-TPP indicates great potential for targeting mitochondria and enables a real-time and long-term tracking mitochondrial dynamics changes.


Asunto(s)
Rastreo Celular/métodos , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Mitocondrias/ultraestructura , Naftalimidas/química , Medios de Contraste/análisis , Medios de Contraste/química , Estabilidad de Medicamentos , Colorantes Fluorescentes/análisis , Humanos , Luz , Células MCF-7 , Naftalimidas/análisis
14.
Acta Crystallogr C ; 69(Pt 9): 954-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24005498

RESUMEN

The reaction of tetrapropylammonium bis(acetylacetonato)gold(I) with alkyne derivatives of the tris(pyrazolyl)methane and 1,8-naphthalimide functional groups yielded two new compounds, both bridged by the linear C[triple-bond]C-Au-C[triple-bond]C spacer, namely tetrapropylammonium bis{3-[2,2,2-tris(1H-pyrazol-1-yl)ethoxy]prop-1-yn-1-yl}aurate(I), (C16H28N)[Au(C14H13N6O)2], and tetrapropylammonium {η(2)-µ-3-[2,4-dioxo-3-azatricyclo[7.3.1.0(5,13)]trideca-1(12),5,7,9(13),10-pentaen-3-yl]prop-1-yn-yl}bis{3-[2,4-dioxo-3-azatricyclo[7.3.1.0(5,13)]trideca-1(12),5,7,9(13),10-pentaen-3-yl]prop-1-yn-1-yl}digold(I) deuterochloroform disolvate, (C16H28N)[Au2(C15H8NO2)3]·2CDCl3. The alkyne-functionalized scorpionate ligand [Au{C[triple-bond]CCH2OCH2C(pz)3}2](-) features two potentially tridentate tris(pyrazolyl)methane donor groups oriented in a `trans' position relative to the C[triple-bond]C-Au-C[triple-bond]C spacer. The naphthalimide-containing compound comprises a σ-bonded NI-CH2-C[triple-bond]C-Au-C[triple-bond]C-CH2-NI unit (NI is the naphthalimide group) π-coordinated to an NI-CH2-C[triple-bond]C-Au neutral fragment. The crystal packing of this compound is supported by π-π stacking interactions of the NI unit, generating a three-dimensional network containing channels accommodating the tetrapropylammonium cations and deuterated chloroform solvent molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA