Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Environ Sci Technol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39270042

RESUMEN

Chlorinated volatile organic compounds come from a wide range of sources and are highly toxic, posing a serious threat to biological health and the environment. Herein, a high-efficiency and energy-saving photothermal synergistic catalytic oxidation method was developed for the removal of 1,2-dichloroethane (1,2-DCE). Compared to traditional thermocatalysis, the 1,2-DCE conversion over Ru-U6S in photothermal synergistic catalysis at 340 °C increased by approximately 44% not only reducing energy consumption but also avoiding the instability of MOF structure caused by high reaction temperature. The excellent photothermal catalytic oxidation activity was derived from the synergistic effect of photo- and thermocatalysis. Ru-U6S demonstrated excellent 1,2-DCE adsorption capacity and stronger light utilization and could produce more reactive oxygen species (•OH and •O2-) after light illumination, which participated in the oxidation reaction, promoting the release of the active site of the catalyst. The results of H2O-TPD and NH3-DRIFTS exhibited that the use of S-containing ligands in the synthesis process increased the hydroxyl groups and Brønsted acid sites, significantly improved the selectivity of CO2 and HCl in the oxidation process, and reduced the release of chlorine-containing byproducts. This work provides a high-efficiency and energy-saving strategy for removing chlorinated volatile organic compounds and increasing the selectivity of ideal products directly with MOFs directly.

2.
Molecules ; 29(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39064995

RESUMEN

The development of economical catalysts that exhibit both high activity and durability for chlorinated volatile organic compounds (CVOCs) elimination remains a challenge. The oxidizing and acidic sites play a crucial role in the oxidation process of CVOCs; herein, praseodymium (Pr) was introduced into CrOx catalysts via in situ pyrolysis of MIL-101(Cr). With the decomposition of the ligand, a mixed micro-mesoporous structure was formed within the M-Cr catalyst, thereby reducing the contact resistance between catalyst active sites and the 1,2-dichloroethane molecule. Moreover, the synergistic interaction between chromium and praseodymium facilitates Oß species and acidic sites, significantly enhancing the low-temperature catalytic performance and durability of the M-PrCr catalyst for 1,2-dichloroethane (1,2-DCE) oxidation. The M-30PrCr catalyst possess enhanced active oxygen sites and acid sites, thereby exhibiting the highest catalytic activity and stability. This study may provide a novel and promising strategy for practical applications in the elimination of 1,2-DCE.

3.
Ecotoxicol Environ Saf ; 279: 116464, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38759534

RESUMEN

1,2-Dichloroethane (1,2-DCE) is a powerfully toxic neurotoxin, which is a common environmental pollutant. Studies have indicated that 1,2-DCE long-term exposure can result in adverse effects. Nevertheless, the precise mechanism remains unknown. In this study, behavioral results revealed that 1,2-DCE long-term exposure could cause anxiety and learning and memory ability impairment in mice. The contents of γ-aminobutyric acid (GABA) and glutamine (Gln) in mice's prefrontal cortex decreased, whereas that of glutamate (Glu) increased. With the increase in dose, the activities of glutamate decarboxylase (GAD) decreased and those of GABA transaminase (GABA-T) increased. The protein and mRNA expressions of GABA transporter-3 (GAT-3), vesicular GABA transporter (VGAT), GABA A receptor α2 (GABAARα2), GABAARγ2, K-Cl cotransporter isoform 2 (KCC2), GABA B receptor 1 (GABABR1), GABABR2, protein kinase A (PKA), cAMP-response element binding protein (CREB), p-CREB, brain-derived neurotrophic factor (BDNF), c-fos, c-Jun and the protein of glutamate dehydrogenase (GDH) and PKA-C were decreased, while the expression levels of GABA transporter-1 (GAT-1) and Na-K-2Cl cotransporter isoform 1 (NKCC1) were increased. However, there was no significant change in the protein content of succinic semialdehyde dehydrogenase (SSADH). The expressions of adenylate cyclase (AC) and cyclic adenosine monophosphate (cAMP) contents were also reduced. In conclusion, the results of this study show that exposure to 1,2-DCE could lead to anxiety and cognitive impairment in mice, which may be related to the disturbance of GABA metabolism and its receptors along with the cAMP-PKA-CREB pathway.


Asunto(s)
Ansiedad , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico , Dicloruros de Etileno , Transducción de Señal , Ácido gamma-Aminobutírico , Animales , Ratones , Ácido gamma-Aminobutírico/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dicloruros de Etileno/toxicidad , Masculino , Ansiedad/inducido químicamente , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , AMP Cíclico/metabolismo , Contaminantes Ambientales/toxicidad , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Glutamato Descarboxilasa/metabolismo
4.
J Hazard Mater ; 470: 134125, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565016

RESUMEN

The study addressed the challenge of treating petroleum industry wastewater with high concentrations of 1,2-dichloroethane (1,2-DCA) ranging from 384 to 1654 mg/L, which poses a challenge for bacterial biodegradation and algal photodegradation. To overcome this, a collaborative approach using membrane bioreactors (MBRs) that combine algae and bacteria was employed. This synergistic method effectively mitigated the toxicity of 1,2-DCA and curbed MBR fouling. Two types of MBRs were tested: one (B-MBR) used bacterial cultures and the other (AB-MBR) incorporated a mix of algal and bacterial cultures. The AB-MBR significantly contributed to 1,2-DCA removal, with algae accounting for over 20% and bacteria for approximately 49.5% of the dechlorination process. 1,2-DCA metabolites, including 2-chloroethanol, 2-chloro-acetaldehyde, 2-chloroacetic acid, and acetic acid, were partially consumed as carbon sources by algae. Operational efficiency peaked at a 12-hour hydraulic retention time (HRT) in AB-MBR, enhancing enzyme activities crucial for 1,2-DCA degradation such as dehydrogenase (DH), alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH). The microbial diversity in AB-MBR surpassed that in B-MBR, with a notable increase in Proteobacteria, Bacteroidota, Planctomycetota, and Verrucomicrobiota. Furthermore, AB-MBR showed a significant rise in the dominance of 1,2-DCA-degrading genus such as Pseudomonas and Acinetobacter. Additionally, algal-degrading phyla (e.g., Nematoda, Rotifera, and Streptophyta) were more prevalent in AB-MBR, substantially reducing the issue of membrane fouling.


Asunto(s)
Reactores Biológicos , Dicloruros de Etileno , Membranas Artificiales , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo , Dicloruros de Etileno/metabolismo , Petróleo/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Eliminación de Residuos Líquidos/métodos
5.
Environ Int ; 184: 108480, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38341879

RESUMEN

1,2-Dichloroethane (1,2-DCE) is a prevalent environmental contaminant, and our study revealed its induction of testicular toxicity in mice upon subacute exposure. Melatonin, a prominent secretory product of the pineal gland, has been shown to offer protection against pyroptosis in male reproductive toxicity. However, the exact mechanism underlying 1,2-DCE-induced testicular toxicity and the comprehensive extent of melatonin's protective effects in this regard remain largely unexplored. Therefore, we sequenced testis piRNAs in mice exposed to environmentally relevant concentrations of 1,2-DCE by 28-day dynamic inhalation, and investigated the role of key piRNAs using GC-2 spd cells. Our results showed that 1,2-DCE induced mouse testicular damage and GC-2 spd cell pyroptosis. 1,2-DCE upregulated the expression of pyroptosis-correlated proteins in both mouse testes and GC-2 spd cells. 1,2-DCE exposure caused pore formation on cellular membranes and lactate dehydrogenase leakage in GC-2 spd cells. Additionally, we identified three upregulated piRNAs in 1,2-DCE-exposed mouse testes, among which piR-mmu-1019957 induced pyroptosis in GC-2 spd cells, and its inhibition alleviated 1,2-DCE-induced pyroptosis. PiR-mmu-1019957 mimic and 1,2-DCE treatment activated the expression of interferon regulatory factor 7 (IRF7) in GC-2 spd cells. IRF7 knockdown reversed 1,2-DCE-induced cellular pyroptosis, and overexpression of piR-mmu-1019957 did not promote pyroptosis when IRF7 was inhibited. Notably, melatonin reversed 1,2-DCE-caused testicular toxicity, cellular pyroptosis, and upregulated piR-mmu-1019957 and IRF7. Collectively, our findings indicated that melatonin mitigates this effect, suggesting its potential as a therapeutic intervention against 1,2-DCE-induced male reproductive toxicity in clinical practice.


Asunto(s)
Dicloruros de Etileno , Melatonina , Testículo , Masculino , Ratones , Animales , Piroptosis , Melatonina/farmacología , Melatonina/metabolismo , ARN de Interacción con Piwi , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/farmacología
6.
China Occupational Medicine ; (6): 116-120, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1038738

RESUMEN

ObjectiveTo analyze the causes of occupational acute 1,2-dichloroethane (1,2-DCE) poisoning accident during the use of polyurethane grouting materials for waterproof plugging operation in the construction industry. Methods By combining the clinical symptoms of the patient, worksite survey of occupational health and workplace occupational hazards monitoring method, the cause of an occupational acute 1,2-DCE poisoning accident was investigated at a construction site during the use of polyurethane grouting material for waterproofing and plugging operations. Results The patient was engaged in waterproof grouting work using polyurethane grouting material. The main volatile organic components in the raw materials were 1,2-DCE, with traces of dichloromethane, methyl acetate and others. The result of post-incident on-site investigation showed that the short-term exposure concentration of 1,2-DCE in the workplace air was 578.70 mg/m3, which was more than 30 times higher than the national occupational health standard limit. The mass concentration of 1,2-DCE in the patient's blood was 230 μg/L. Combined with the patient's occupational hazard exposure history, clinical manifestations, worksite survey of occupational health, and laboratory test results, according to GBZ 39-2016 Diagnosis of Occupational Acute 1,2-Dichloroethane Poisoning, this incident was diagnosed as a severe occupational acute 1,2-DCE poisoning event caused by the use of inferior polyurethane grouting material. Conclusion The excessive concentration of 1,2-DCE in the workplace air is the main cause of this poisoning accident. Construction sites with confined space operations should improve various occupational health management systems, occupational health engineering protective facilities, and personal protective equipment must be provided for workers.

7.
Toxicol Res ; 39(4): 565-574, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37779589

RESUMEN

The production of industrial solvents and adhesives often utilizes 1,2-dichloroethane (1,2-DCE), a highly toxic halogenated hydrocarbon compound. Occupational 1,2-DCE poisoning occurs frequently and is a public health concern. Exposure to 1,2-DCE can damage the brain, liver, and kidneys. The main and most severe damage caused by exposure to 1,2-DCE is to the nervous system, especially the central nervous system. Current research on 1,2-DCE mainly focuses on the mechanism of brain edema. Several possible mechanisms of 1,2-DCE neurotoxicity have been proposed, including oxidative stress, calcium overload, blood-brain barrier damage, and neurotransmitter changes. This article reviews the research progress on 1,2-DCE neurotoxicity and the mechanism behind it to provide a scientific basis for the prevention and treatment of 1,2-DCE poisoning.

8.
Food Chem Toxicol ; 176: 113812, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37150348

RESUMEN

Our previous studies have shown that the metabolism of 1,2-dichloroethane (1,2-DCE) mediated by CYP2E1 could result in oxidative damage in the liver of mice. In the current study, we further investigated the effects of combined treatment with 1,2-DCE and high dose ethanol on liver and the mechanisms since both of them can be metabolized by CYP2E1 in the liver. There are several novel findings in the current study. First, combined treatment of mice with 1,2-DCE and high-dose ethanol could synergistically upregulate both protein and mRNA levels of CYP2E1, which might aggravate liver damage through CYP2E1-mediated oxidative stress. Second, the combined treatment could also synergistically trigger NLRP3 inflammasome activation and inflammatory responses in the liver. Third, the combined treatment synergistically upregulated the antioxidant defence systems in response to oxidative stress, however the compensatory mechanisms of antioxidant defence systems appeared to be insufficient to protect liver damage in the mice. Finally, the upregulated CYP2E1 expression was confirmed by using its specific inhibitor to play the crucial roles in liver damage in the mice during the combined treatment.


Asunto(s)
Etanol , Hepatopatías , Ratones , Animales , Etanol/metabolismo , Antioxidantes/farmacología , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Hepatopatías/metabolismo , Hígado , Estrés Oxidativo
9.
Toxicol Lett ; 380: 40-52, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37028497

RESUMEN

1,2-Dichloroethane (1,2-DCE) is a pervasive environmental pollutant found in ambient and residential air, as well as ground and drinking water. Brain edema is the primary pathological consequence of 1,2-DCE overexposure. We found that microRNA (miRNA)-29b dysregulation after 1,2-DCE exposure can aggravate brain edema by suppressing aquaporin 4 (AQP4). Moreover, circular RNAs (circRNAs) can regulate the expression of downstream target genes through miRNA, and affect protein function. However, circRNAs' role in 1,2-DCE-induced brain edema via miR-29b-3p/AQP4 axis remains unclear. To address the mechanism's bottleneck, we explored the circRNA-miRNA-mRNA network underlying 1,2-DCE-driven astrocyte swelling in SVG p12 cells by circRNA sequencing, electron microscopy and isotope 3H labeling combined with the 3-O-methylglucose uptake method. The results showed that 25 and 50 mM 1,2-DCE motivated astrocyte swelling, characterized by increased water content, enlarged cell vacuoles, and mitochondrial swelling. This was accompanied by miR-29b-3p downregulation and AQP4 upregulation. We verified that AQP4 were negatively regulated by miR-29b-3p in 1,2-DCE-induced astrocyte swelling. Also, circRNA sequencing highlighted that circBCL11B was upregulated by 1,2-DCE. This was manifested as circBCL11B overexpression playing an endogenous competitive role via upregulating AQP4 by binding to miR-29b-3p, thus leading to astrocyte swelling. Conversely, circBCL11B knockdown reversed the 1,2-DCE-motivated AQP4 upregulation and alleviated the cell swelling. Finally, we demonstrated that the circBCL11B was targeted to miR-29b-3p by fluorescence in situ hybridization and dual-luciferase reporter assay. In conclusion, our findings indicate that circBCL11B acts as a competing endogenous RNA to facilitate 1,2-DCE-caused astrocyte swelling via miR-29b-3p/AQP4 axis. These observations provide new insight into the epigenetic mechanisms underlying 1,2-DCE-induced brain edema.


Asunto(s)
Edema Encefálico , MicroARNs , Humanos , ARN Circular/genética , Edema Encefálico/inducido químicamente , Edema Encefálico/genética , Edema Encefálico/patología , Astrocitos/metabolismo , Acuaporina 4/genética , Hibridación Fluorescente in Situ , MicroARNs/genética , MicroARNs/metabolismo
10.
Sci Total Environ ; 878: 163140, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001652

RESUMEN

Currently, 1,2-dichloroethane (DCA) is frequently detected in groundwater and has been listed as a potential human carcinogen by the U.S. EPA. Owing to its toxicity and recalcitrant nature, inefficient DCA mineralization has become a bottleneck of DCA bioremediation. In this study, the first engineered DCA-mineralizing strain KTU-P8DCA was constructed by functional assembly of DCA degradation pathway and enhancing pathway expression with a strong promoter P8 in the biosafety strain Pseudomonas putida KT2440. Strain KTU-P8DCA can metabolize DCA to produce CO2 and utilize DCA as the sole carbon source for cell growth by quantifying 13C stable isotope ratios in collected CO2 and in lyophilized cells. Strain KTU-P8DCA exhibited superior tolerance to high concentrations of DCA. Excellent genetic stability was also observed in continuous passage culture. Therefore, strain KTU-P8DCA has enormous potential for use in bioremediation of sites heavily contaminated with DCA. In the future, our strategy for pathway construction and optimization is expected to be developed as a standard pipeline for creating a wide variety of new contaminants-mineralizing microorganisms. The present study also highlights the power of synthetic biology in creating novel degraders for environmental remediation.


Asunto(s)
Dióxido de Carbono , Pseudomonas putida , Humanos , Dióxido de Carbono/metabolismo , Dicloruros de Etileno/metabolismo , Biodegradación Ambiental , Pseudomonas putida/genética
11.
Environ Pollut ; 325: 121443, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921661

RESUMEN

1,2-Dichloroethane (1,2-DCA) is a ubiquitous volatile halogenated organic pollutant in groundwater and soil, which poses a serious threat to the ecosystem and human health. Microbial reductive dechlorination has been recognized as an environmentally-friendly strategy for the remediation of sites contaminated with 1,2-DCA. In this study, we obtained an anaerobic microbiota derived from 1,2-DCA contaminated groundwater, which was able to sustainably convert 1,2-DCA into non-toxic ethylene with an average dechlorination rate of 30.70 ± 11.06 µM d-1 (N = 6). The microbial community profile demonstrated that the relative abundance of Dehalococcoides species increased from 0.53 ± 0.08% to 44.68 ± 3.61% in parallel with the dechlorination of 1,2-DCA. Quantitative PCR results showed that the Dehalococcoides species 16S rRNA gene increased from 2.40 ± 1.71 × 108 copies∙mL-1 culture to 4.07 ± 2.45 × 108 copies∙mL-1 culture after dechlorinating 110.69 ± 30.61 µmol of 1,2-DCA with a growth yield of 1.55 ± 0.93 × 108 cells per µmol Cl- released (N = 6), suggesting that Dehalococcoides species used 1,2-DCA for organohalide respiration to maintain cell growth. Notably, the relative abundances of Methanobacterium sp. (p = 0.0618) and Desulfovibrio sp. (p = 0.0001995) also increased significantly during the dechlorination of 1,2-DCA and were clustered in the same module with Dehalococcoides species in the co-occurrence network. These results hinted that Dehalococcoides species, the obligate organohalide-respiring bacterium, exhibited potential symbiotic relationships with Methanobacterium and Desulfovibrio species. This study illustrates the importance of microbial interactions within functional microbiota and provides a promising microbial resource for in situ bioremediation in sites contaminated with 1,2-DCA.


Asunto(s)
Chloroflexi , Dehalococcoides , Humanos , Dehalococcoides/genética , ARN Ribosómico 16S/genética , Ecosistema , Biodegradación Ambiental , Etilenos , Chloroflexi/genética
12.
Micromachines (Basel) ; 14(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36677250

RESUMEN

ZnO/graphene nanocomposites were prepared using a facile approach. Graphene nanosheets were prepared by ultrasonication-based liquid phase exfoliation of graphite powder in a low boiling point organic solvent, 1,2-Dichloroethane, for the preparation of ZnO/graphene nanocomposites. Structural properties of the synthesized ZnO/graphene nanocomposites were studied through powder XRD and micro-Raman analysis. The characteristic Raman active modes of ZnO and graphene present in the micro-Raman spectra ensured the formation of ZnO/graphene nanocomposite and it is inferred that the graphene sheets in the composites were few layers in nature. Increasing the concentration of graphene influenced the surface morphology of the ZnO nanoparticles and a flower shape ZnO was formed on the graphene nanosheets of the composite with high graphene concentration. The efficiencies of the samples for the photocatalytic degradation of Methylene Blue dye under sunlight irradiation were investigated and 97% degradation efficiency was observed. The stability of the nanocomposites was evaluated by performing five cycles, and 92% degradation efficiency was maintained. The observed results were compared with that of ZnO/graphene composite derived from other methods.

13.
ACS Appl Mater Interfaces ; 15(5): 6631-6638, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36705573

RESUMEN

CuFe2O4 spinel has been considered as a promising catalyst for the electrochemical reaction, while the nature of the crystal phase on its intrinsic activity and the kind of active site need to be further explored. Herein, the crystal phase-dependent catalytic behavior and the main active sites of CuFe2O4 spinel for electrochemical dechlorination of 1,2-dichloroethane are carefully studied based on the combination of experiments and theoretical calculations. Cubic and tetragonal CuFe2O4 are successfully prepared by a facile sol-gel method combined with high temperature calcination. Impressively, CuFe2O4 with the cubic phase shows a higher activity and ethylene selectivity compared to CuFe2O4 with the tetragonal phase, suggesting a significant facilitation of electrocatalytic performance by the cubic crystal structure. Moreover, the octahedral Fe atom on the surface of cubic CuFe2O4(311) is the active site responsible to produce ethylene with the energy barrier of 0.40 eV. This work demonstrates the significance of crystal phase engineering for the optimization of electrocatalytic performance and offers an efficient strategy for the development of advanced electrocatalysts.

14.
Environ Res ; 216(Pt 3): 114694, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36328224

RESUMEN

1,2-Dichloroethane (1,2-DCA) is a common compound found in groundwater contaminated with organics. This compound is difficult to remove from groundwater and has the potential to inflict significant harm on human health and the environment. This study used sodium persulfate (Na2S2O8) activated by sodium hydroxide (NaOH) to remove 1,2-DCA from aqueous solutions. Density functional theory was employed to calculate the potential energy surface of the reactants, intermediates, transient states, and products to thoroughly analyze the degradation pathways. The computations were performed in combination with in situ remediation of a 1,2-DCA plume from a point source to verify the industrial applicability of the technology. The results showed the 1,2-DCA removal efficiency was impacted considerably by the Na2S2O8 dosage and the dosing sequence of Na2S2O8 and NaOH, with the mean removal ratio reaching 96.24%. A free radical reaction was the main pathway of 1,2-DCA degradation; superoxide radical (O2•-) existed stably and played a key role in the reaction, and the main transformation proceeded via a vinyl chloride intermediate. The maximum removal of 1,2-DCA reached 91.79% in the in situ remediation. The developed technology exhibits important advantages in enabling flexible control over chemical dosages, long durations of effective activity, and rapid full-cycle remediation.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Hidróxido de Sodio , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Sulfatos/química , Cinética , Oxidación-Reducción
15.
Methods Mol Biol ; 2613: 145-152, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587077

RESUMEN

Lipid rafts are usually isolated from cells or tissues using sucrose gradient ultracentrifugation in the presence of detergents such as Triton X-100 at 4 °C. Although detergents should be removed for further structural characterization following fractionation, these compounds are often difficult to completely remove, especially from the glycolipids. In this chapter, we describe a novel method for the fast and convenient removal of detergents from lipid raft glycolipids following fraction and describe the application of this method.


Asunto(s)
Detergentes , Glucolípidos , Glucolípidos/análisis , Detergentes/química , Centrifugación por Gradiente de Densidad , Octoxinol , Microdominios de Membrana/química
16.
Environ Pollut ; 310: 119813, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35868470

RESUMEN

1,2-Dichloroethane (1,2-DCE) is a highly toxic neurotoxicity, and the brain tissue is the main target organ. At present, long-term exposure to 1,2-DCE has been shown to cause cognitive dysfunction in some studies, but the mechanism is not clear. The results of this study showed that long-term 1,2-DCE exposure decreased learning and memory abilities in mice and impaired the structure and morphology of neurons in the hippocampal region. Moreover, except for the mRNA level of PAG, the enzymatic activities and protein levels of GS and PAG, as well as the mRNA level of GS were inhibited. With increasing dose of exposure, the protein and mRNA expression of GLAST and GLT-1 also decreased. Contrarily, there were protein and mRNA expression upregulation of GluN1, GluN2A and GluN2B in the hippocampus, as well as increased levels of extracellular Glu and intracellular Ca2+. In addition, 1,2-DCE exposure also downregulated the protein expression levels of CaM, CaMKII and CREB. Taken together, our results suggest that long-term 1,2-DCE exposure impairs the learning and memory capacity in mice, which may be attributed to the disruption of Glu metabolism and the inhibition of CaM- CaMKII-CREB signaling pathway in the hippocampus.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Hipocampo , Animales , Dicloruros de Etileno , Glutamatos , Ratones , ARN Mensajero , Transducción de Señal
17.
Environ Sci Technol ; 56(16): 11739-11749, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35880312

RESUMEN

The compositions of volatile organic compounds (VOCs) under actual industrial conditions are often complex; especially, the interaction of intermediate products easily leads to more toxic emissions that are harmful to the atmospheric environment and human health. Herein, we report a comparative investigation on 1,2-dichloroethane (1,2-DCE) and (1,2-DCE + toluene) oxidation over the Ru/TiO2, phosphotungstic acid (HPW)-modified Ru/TiO2, and oxygen vacancy-rich Ru/TiOx catalysts. The doping of HPW successfully introduced the 1,2-DCE adsorption sites to promote its oxidation and exhibited outstanding water resistance. For the mixed VOCs, Ru/HPW-TiO2 promoted the preferential and superfluous adsorption of toluene and resulted in the inhibition of 1,2-DCE degradation. Therefore, HPW modification is a successful strategy in catalytic 1,2-DCE oxidation, but Brønsted acid sites tend to adsorb toluene in the mixed VOC oxidation. The Ru/TiOx catalyst exhibited excellent activity and stability in the oxidation of mixed VOCs and could inhibit the generation of byproducts and Cl2 compared with the Ru/HPW-TiO2 catalyst. Compared with the Brønsted acid modification, the oxygen vacancy-rich catalysts are significantly suitable for the oxidation of multicomponent VOCs.


Asunto(s)
Tolueno , Compuestos Orgánicos Volátiles , Catálisis , Dicloruros de Etileno , Humanos , Oxidación-Reducción , Estrés Oxidativo , Oxígeno , Titanio , Agua
18.
Anal Sci ; 38(8): 1115-1121, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35718829

RESUMEN

Detergent removal in glycolipid after sample preparation, such as enzymatic reaction or isolation of detergent-resistant membrane microdomain, is indispensable for further structural characterization. We previously established the rapid and effective method of detergent removal in glycolipid samples from glass test tube using 1,2-dichloroethane (DCE) washing. However, the use of DCE has several drawbacks, such as environmental risks, harmful effects (potentially carcinogenic), and high vaporability and flammability. To solve the issue, we used ionic liquids to remove detergents from glycolipid samples, and found 1-butyl-3-methylimidazolium iodide was a suitable alternative for DCE.


Asunto(s)
Líquidos Iónicos , Detergentes/química , Glucolípidos/química , Yoduros , Líquidos Iónicos/química
19.
Chemosphere ; 305: 135376, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35716714

RESUMEN

1,2-dichloroethane (1,2-DCA) is a chlorinated hydrocarbon used for polyvinyl chloride plastic production. As such, 1,2-DCA is a common persistent contaminant in saturated zones. While nanoscale zerovalent iron (NZVI) is considered an effective reductant for removing a wide range of chlorinated hydrocarbons, 1,2-DCA is resistant to reduction by NZVI as well as by modified forms of NZVI (e.g., sulfidated-NZVI). Hydroxyl radicals produced in Fenton's reaction can effectively degrade 1,2-DCA, but Fenton's reaction requires the acidification of saturated zones to achieve a groundwater pH of 3 to facilitate the catalytic reaction. To overcome this problem, this study has developed a sequential treatment process using an NZVI-induced Fenton-like reaction that can effectively degrade 1,2-DCA at an initially neutral pH range. The experiments were conducted using a high 1,2-DCA concentration (2000 mg/L) to evaluate the feasibility of using the treatment process at source zones. The process degraded 99% of 1,2-DCA with a pseudo-first-order rate constant of 0.49 h-1. Unlike the single-stage treatment process, the sequential treatment can control the used H2O2 concentration in the system, thus sustaining the reaction and resulting in more efficient 1,2-DCA degradation. To mimic subsurface conditions, batch experiments were conducted to remove 1,2-DCA sorbed in contaminated soil. The results show that 99% removal of 1,2-DCA was obtained within 16 h. Additionally, this study suggests that the NZVI can be used for at least three consecutive 1,2-DCA degradation cycles while maintaining high removal efficiency.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Dicloruros de Etileno , Peróxido de Hidrógeno , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis
20.
Environ Sci Technol ; 56(6): 3430-3440, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35239320

RESUMEN

Chlorinated ethanes, including 1,2-dichloroethane (1,2-DCA) and 1,1,2-trichloroethane (1,1,2-TCA), are widespread groundwater contaminants. Enrichment cultures XRDCA and XRTCA derived from river sediment dihaloeliminated 1,2-DCA to ethene and 1,1,2-TCA to vinyl chloride (VC), respectively. The XRTCA culture subsequently converted VC to ethene via hydrogenolysis. Microbial community profiling demonstrated the enrichment of Geobacter 16S rRNA gene sequences in both the XRDCA and XRTCA cultures, and Dehalococcoides mccartyi (Dhc) sequences were only detected in the ethene-producing XRTCA culture. The presence of a novel Geobacter population, designated as Geobacter sp. strain IAE, was identified by the 16S rRNA gene-targeted polymerase chain reaction and Sanger sequencing. Time-resolved population dynamics attributed the dihaloelimination activity to strain IAE, which attained the growth yields of 0.93 ± 0.06 × 107 and 1.18 ± 0.14 × 107 cells per µmol Cl- released with 1,2-DCA and 1,1,2-TCA as electron acceptors, respectively. In contrast, Dhc growth only occurred during VC-to-ethene hydrogenolysis. Our findings discover a Geobacter sp. strain capable of respiring multiple chlorinated ethanes and demonstrate the involvement of a broader diversity of organohalide-respiring bacteria in the detoxification of 1,2-DCA and 1,1,2-TCA.


Asunto(s)
Chloroflexi , Geobacter , Cloruro de Vinilo , Contaminantes Químicos del Agua , Biodegradación Ambiental , Chloroflexi/genética , Dicloruros de Etileno , ARN Ribosómico 16S/genética , Tricloroetanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA