Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Biomedicines ; 12(8)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39200278

RESUMEN

ß-adrenoceptor (ß-AR) agonists are known to antagonize thrombin-induced impairment (TII) of bovine and ovine lung endothelial barrier function. The effects of adrenoceptor agonists and other vasoactive agents on human lung microvascular endothelial cell (HULEC-5a) barrier function upon thrombin exposure have not been studied. Furthermore, it is unknown whether the in vitro effects of adrenoceptor agonists translate to lung protective effects in vivo. We observed that epinephrine, norepinephrine, and phenylephrine enhanced normal and prevented TII of HULEC-5a barrier function. Arginine vasopressin and angiotensin II were ineffective. α1B-, α2A/B-, and ß1/2-ARs were detectable in HULEC-5a by RT-PCR. Propranolol but not doxazosin blocked the effects of all adrenoceptor agonists. Phenylephrine stimulated ß2-AR-mediated Gαs activation with 13-fold lower potency than epinephrine. The EC50 to inhibit TII of HULEC-5a barrier function was 1.8 ± 1.9 nM for epinephrine and >100 nM for phenylephrine. After hemorrhagic shock and fluid resuscitation in rats, Evans blue extravasation into the lung increased threefold (p < 0.01 vs. sham). Single low-dose (1.8 µg/kg) epinephrine administration at the beginning of resuscitation had no effects on blood pressure and reduced Evans blue extravasation by 60% (p < 0.05 vs. vehicle). Our findings confirm the effects of ß-adrenoceptor agonists in HULEC-5a and suggest that low-dose ß-adrenoceptor agonist treatment protects lung vascular barrier function after traumatic hemorrhagic shock.

2.
Front Behav Neurosci ; 18: 1379866, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807929

RESUMEN

Background: Drug seeking behavior occurs in response to environmental contexts and drug-associated cues. The presence of these pervasive stimuli impedes abstinence success. ß-adrenergic receptors (ß-ARs) have a long-standing historical implication in driving processes associated with contextual memories, including drug-associated memories in substance use disorders. However, sex differences in the role of ß-adrenergic receptors in drug memories remain unknown. Hypothesis: Prior reports indicate a selective role for ß2-ARs in retrieval and retention of contextual drug memories in males, and substantial sex differences exist in the expression of ß-ARs of male and female rats. Therefore, we hypothesized that there are sex differences in selective recruitment of ß-ARs during different stages of memory encoding and retrieval. Methods: The role of ß-ARs in driving retrieval and learning of contextual cocaine memories was investigated using cocaine conditioned place preference (CPP) in adult male and female Sprague-Dawley rats. Rats were infused directly to the dorsal hippocampus with Propranolol (ß1 and ß2) or ICI-118,551 (ß1) and/or Betaxolol (ß2), immediately prior to testing (retrieval), or paired to each cocaine (10 mg/kp, IP) conditioning session (learning). Results: In males, administration of either ß1, ß2, or combined ß1 and ß2-ARs before the initial CPP testing reduced the expression of a CPP compared to vehicle administration. In females, ß2-ARs transiently decreased CPP memories, whereas ß1 had long lasting but not immediate effects to decrease CPP memories. Additionally, ß1 and combined ß1 and ß2-ARs had immediate and persistent effects to decrease CPP memory expression. DG Fos + neurons predicted cocaine CPP expression in males, whereas CA1 and CA3 Fos + neurons predicted cocaine CPP expression in females. Conclusion: There are significant sex differences in the role of dorsal hippocampus ß-ARs in the encoding and expression of cocaine conditioned place preference. Furthermore, sub regions of the dorsal hippocampus appear to activate differently between male and female rats during CPP. Therefore DG, CA3, and CA1 may have separate region- and sex-specific impacts on driving drug- associated, or context-associated cues.

3.
J Neurosci ; 44(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37989594

RESUMEN

Glutamate spillover from the synapse is tightly regulated by astrocytes, limiting the activation of extrasynaptically located NMDA receptors (NMDAR). The processes of astrocytes are dynamic and can modulate synaptic physiology. Though norepinephrine (NE) and ß-adrenergic receptor (ß-AR) activity can modify astrocyte volume, this has yet to be confirmed outside of sensory cortical areas, nor has the effect of noradrenergic signaling on glutamate spillover and neuronal NMDAR activity been explored. We monitored changes to astrocyte process volume in response to noradrenergic agonists in the medial prefrontal cortex of male and female mice. Both NE and the ß-AR agonist isoproterenol (ISO) increased process volume by ∼20%, significantly higher than changes seen when astrocytes had G-protein signaling blocked by GDPßS. We measured the effect of ß-AR signaling on evoked NMDAR currents. While ISO did not affect single stimulus excitatory currents of Layer 5 pyramidal neurons, ISO reduced NMDAR currents evoked by 10 stimuli at 50 Hz, which elicits glutamate spillover, by 18%. After isolating extrasynaptic NMDARs by blocking synaptic NMDARs with the activity-dependent NMDAR blocker MK-801, ISO similarly reduced extrasynaptic NMDAR currents in response to 10 stimuli by 18%. Finally, blocking ß-AR signaling in the astrocyte network by loading them with GDPßS reversed the ISO effect on 10 stimuli-evoked NMDAR currents. These results demonstrate that astrocyte ß-AR activity reduces extrasynaptic NMDAR recruitment, suggesting that glutamate spillover is reduced.


Asunto(s)
Astrocitos , Receptores de N-Metil-D-Aspartato , Ratones , Animales , Masculino , Femenino , Receptores de N-Metil-D-Aspartato/metabolismo , Astrocitos/metabolismo , Células Piramidales/fisiología , Corteza Prefrontal/fisiología , Ácido Glutámico/fisiología , Receptores Adrenérgicos beta , Sinapsis/fisiología
4.
Cancers (Basel) ; 15(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067204

RESUMEN

In addition to binding to nicotinic acetylcholine receptors (nAChRs), nicotine is known to regulate the ß-adrenergic receptors (ß-ARs) promoting oncogenic signaling. Using A549 (p53 wild-type) and H1299 (p53-null) lung cancer cells, we show that nicotine treatment led to: increased adrenaline/noradrenaline levels, an effect blocked by treatment with the α7nAChR inhibitor (α-BTX) but not by the ß-blocker (propranolol) or the α4ß2nAChR antagonist (DhßE); decreased GABA levels in A549 and H1299 cell media, an effect blocked by treatment with DhßE; increased VEGF levels and PI3K/AKT activities, an effect diminished by cell co-treatment with α-BTX, propranolol, and/or DhßE; and inhibited p53 activity in A549 cells, that was reversed, upon cell co-treatment with α-BTX, propranolol, and/or DhßE or by VEGF immunodepletion. VEGF levels increased upon cell treatment with nicotine, adrenaline/noradrenaline, and decreased with GABA treatment. On the other hand, the p53 activity decreased in A549 cells treated with nicotine, adrenaline/noradrenaline and increased upon cell incubation with GABA. Knockdown of p53 led to increased VEGF levels in the media of A549 cells. The addition of anti-VEGF antibodies to A549 and H1299 cells decreased cell viability and increased apoptosis; blocked the activities of PI3K, AKT, and NFκB in the absence or presence of nicotine; and resulted in increased p53 activation in A549 cells. We conclude that VEGF can be upregulated via α7nAChR and/or ß-ARs and downregulated via GABA and/or p53 in response to the nicotine treatment of NSCLC cells.

5.
Biomedicines ; 11(9)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37760996

RESUMEN

The ectodomain of the transmembrane protein E-cadherin can be cleaved and released in a soluble form referred to as soluble E-cadherin, or sE-cad, accounting for decreased E-cadherin levels at the cell surface. Among the proteases implicated in this cleavage are matrix metalloproteases (MMP), including MMP9. Opposite functions have been reported for full-length E-cadherin and sE-cad. In this study, we found increased MMP9 levels in the media of two non-small cell lung cancer (NSCLC) cell lines, A549 and H1299, treated with BDNF, nicotine, or epinephrine that were decreased upon cell treatment with the ß-adrenergic receptor blocker propranolol. Increased MMP9 levels correlated with increased sE-cad levels in A549 cell media, and knockdown of MMP9 in A549 cells led to downregulation of sE-cad levels in the media. Previously, we reported that A549 and H1299 cell viability increased with nicotine and/or BDNF treatment and decreased upon treatment with propranolol. In investigating the function of sE-cad, we found that immunodepletion of sE-cad from the media of A549 cells untreated or treated with BDNF, nicotine, or epinephrine reduced activation of EGFR and IGF-1R, decreased PI3K and ERK1/2 activities, increased p53 activation, decreased cell viability, and increased apoptosis, while no effects were found using H1299 cells under all conditions tested.

6.
Cardiovasc Res ; 119(17): 2697-2711, 2023 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-37643895

RESUMEN

AIMS: The sympathetic nervous system increases HR by activating ß-adrenergic receptors (ß-ARs) and increasing cAMP in sinoatrial node (SAN) myocytes while phosphodiesterases (PDEs) degrade cAMP. Chronotropic incompetence, the inability to regulate heart rate (HR) in response to sympathetic nervous system activation, is common in hypertensive heart disease; however, the basis for this is poorly understood. The objective of this study was to determine the mechanisms leading to chronotropic incompetence in mice with angiotensin II (AngII)-induced hypertensive heart disease. METHODS AND RESULTS: C57BL/6 mice were infused with saline or AngII (2.5 mg/kg/day for 3 weeks) to induce hypertensive heart disease. HR and SAN function in response to the ß-AR agonist isoproterenol (ISO) were studied in vivo using telemetry and electrocardiography, in isolated atrial preparations using optical mapping, in isolated SAN myocytes using patch-clamping, and using molecular biology. AngII-infused mice had smaller increases in HR in response to physical activity and during acute ISO injection. Optical mapping of the SAN in AngII-infused mice demonstrated impaired increases in conduction velocity and altered conduction patterns in response to ISO. Spontaneous AP firing responses to ISO in isolated SAN myocytes from AngII-infused mice were impaired due to smaller increases in diastolic depolarization (DD) slope, hyperpolarization-activated current (If), and L-type Ca2+ current (ICa,L). These changes were due to increased localization of PDE4D surrounding ß1- and ß2-ARs in the SAN, increased SAN PDE4 activity, and reduced cAMP generation in response to ISO. Knockdown of PDE4D using a virus-delivered shRNA or inhibition of PDE4 with rolipram normalized SAN sensitivity to ß-AR stimulation in AngII-infused mice. CONCLUSIONS: AngII-induced hypertensive heart disease results in impaired HR responses to ß-AR stimulation due to up-regulation of PDE4D and reduced effects of cAMP on spontaneous AP firing in SAN myocytes.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Hipertensión , Receptores Adrenérgicos beta , Nodo Sinoatrial , Animales , Ratones , Arritmias Cardíacas , Isoproterenol/farmacología , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal , Hipertensión/inducido químicamente , Hipertensión/complicaciones , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo
7.
Phys Act Nutr ; 27(2): 39-49, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37583071

RESUMEN

PURPOSE: Aging is closely associated with chronic metabolic diseases, such as obesity, which lead to increased adiposity, skeletal muscle wasting, and imbalanced cellular energy metabolism. However, transcriptional profiles representing energy imbalances in aging-induced obesity are not fully understood. Thus, this study aimed to investigate the candidate genes predominantly regulated in aging-related obesity in spontaneously aged mice. METHODS: Male C57BL/6J mice were divided into three age groups according to age: 2- (young), 12- (middle-aged), and 24- (old) months. Body weight and body composition parameters were measured in all mice. Gonadal white adipose tissue (gWAT), brown adipose tissue (BAT), and skeletal muscle (SM) were dissected and weighed. The target tissues were assessed using biochemical and histological assays. RESULTS: Aging-induced obesity increased adipose mass and decreased SM weight through processes of adipocyte hypertrophy; however, recruitment of modulating adipogenesis-inducing transcription factors did not occur. Among adipokines, leptin level was greatly increased in the gWAT during aging. Interestingly, the ß2-adrenergic receptor had a higher affinity than the ß3-adrenergic receptor in aging-induced obesity. For the thermogenic regulation through ß-adrenergic receptors (ß-ARs), a declined uncoupling protein-1 (UCP-1) in the BAT was relevant to aging-induced obesity. CONCLUSION: Aging-induced obesity increases leptin levels in adipocytes and decreases UCP-1 in BAT through ß-ARs, according to transcriptional gene profiling. WAT browning increases energy expenditure due to exercise training adaptations. Further research is needed to discover more effective methods, such as exercise, against aging-induced obesity.

8.
Phytomedicine ; 115: 154830, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37149964

RESUMEN

BACKGROUD: Xinbao Pill (XBP) is extensively used in the adjuvant treatment of chronic heart failure in China. However, the pharmacological effect and underlying mechanism on CHF remains unclear. PURPOSE: Our research was performed to investigate the cardioprotective effect of XBP against CHF and uncover the potential mechanism. METHODS: Male Sprague-Dawley (SD) rats were subjected to the left anterior descending (LAD) artery ligation for 8 weeks and were treated with different doses of XBP (from the 4th week to the end). Cardiac function and morphology assessment were performed by using M-mode echocardiography, H&E and Masson staining. Western blotting analysis, co-immunoprecipitation (IP) assays, siRNA transfection were used to evaluate the mechanism of XBP. RESULTS: XBP improved cardiac function and alleviated cardiac fibrosis in LAD-induced chronic heart failure rats. Meanwhile, XBP protected cardiomyocytes against oxygen-glucose deprivation (OGD) injury in AC16 cells and H9c2 cells. Additionally, XBP could increase the expression of ß1-AR and ß2-AR and inhibit their ubiquitanation. Further mechanism study showed that XBP upregulated USP18 expression, while silence of USP18 attenuated the cardioprotective effect of XBP and the increase of ß1-AR by XBP. Moreover, XBP increased MDM2 and ß-arrestin2, and disrupted the interaction between Nedd4 and ß2-AR. After using the inhibitor of MDM2, SP141, the cardioprotective effect of XBP and the inhibitory effect on the ubiquitanation of ß2-AR were also blocked. CONCLUSION: Our study firstly revealed that XBP improved cardiac function against CHF through suppressing USP18 and MDM2/ß-arrestin2/Nedd4-mediated the ubiquitination of ß1-AR and ß2-AR.


Asunto(s)
Insuficiencia Cardíaca , Receptores Adrenérgicos beta , Ratas , Masculino , Animales , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta/uso terapéutico , Ratas Sprague-Dawley , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos , Ubiquitinación , Receptores Adrenérgicos beta 2/metabolismo
9.
J Biol Chem ; 299(6): 104706, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37061000

RESUMEN

Learning, memory, and cognition are thought to require synaptic plasticity, specifically including hippocampal long-term potentiation and depression (LTP and LTD). LTP versus LTD is induced by high-frequency stimulation versus low-frequency, but stimulating ß-adrenergic receptors (ßARs) enables LTP induction also by low-frequency stimulation (1 Hz) or theta frequencies (∼5 Hz) that do not cause plasticity by themselves. In contrast to high-frequency stimulation-LTP, such ßAR-LTP requires Ca2+-flux through L-type voltage-gated Ca2+-channels, not N-methyl-D-aspartate-type glutamate receptors. Surprisingly, we found that ßAR-LTP still required a nonionotropic scaffolding function of the N-methyl-D-aspartate-type glutamate receptor: the stimulus-induced binding of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) to its GluN2B subunit that mediates CaMKII movement to excitatory synapses. In hippocampal neurons, ß-adrenergic stimulation with isoproterenol (Iso) transformed LTD-type CaMKII movement to LTP-type movement, resulting in CaMKII movement to excitatory instead of inhibitory synapses. Additionally, Iso enabled induction of a major cell-biological feature of LTP in response to LTD stimuli: increased surface expression of GluA1 fused with super-ecliptic pHluorein. Like for ßAR-LTP in hippocampal slices, the Iso effects on CaMKII movement and surface expression of GluA1 fused with super-ecliptic pHluorein involved L-type Ca2+-channels and specifically required ß2-ARs. Taken together, these results indicate that Iso transforms LTD stimuli to LTP signals by switching CaMKII movement and GluN2B binding to LTP mode.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Potenciación a Largo Plazo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Receptores Adrenérgicos beta/metabolismo , Ácido D-Aspártico/metabolismo , Ácido D-Aspártico/farmacología , Depresión Sináptica a Largo Plazo/fisiología , Hipocampo/metabolismo , Sinapsis/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
10.
Pharmacol Rep ; 75(2): 342-357, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36787018

RESUMEN

BACKGROUND: Methylphenidate and atomoxetine are used for the treatment of attention-deficit/hyperactivity disorder (ADHD). Our previous studies established the validity of the 6-hydroxydopamine (6-OHDA) mouse model of ADHD and demonstrated hypersensitivity to pain, in line with clinical reports in ADHD patients. Acute methylphenidate treatment reduces hyperactivity and increases attention, but does not affect pain behaviors in this mouse model. Whereas atomoxetine has been shown to be effective against some symptoms of ADHD, nothing is known about its possible action on comorbid pain hypersensitivity. The objectives of the present research are (1) to investigate the effects of acute and chronic treatment with atomoxetine on ADHD-like symptoms and nociceptive thresholds, and (2) to explore the catecholaminergic systems underlying these effects. METHODS: Sham and 6-OHDA cohorts of male mice were tested for hyperactivity (open field), attention and impulsivity (5-choice serial reaction time task test), and thermal (hot plate test) and mechanical (von Frey test) thresholds after acute or repeated treatment with vehicle or atomoxetine (1, 3 or 10 mg/kg). RESULTS: Acute administration of atomoxetine (10 mg/kg) reduced the hyperactivity and impulsivity displayed by 6-OHDA mice, without affecting attention or nociception. However, atomoxetine administered at 3 mg/kg/day for 7 days alleviated the ADHD-like core symptoms and attenuated the hyperalgesic responses. Furthermore, hyperlocomotion and anti-hyperalgesic activity were antagonized with phentolamine, propranolol, and sulpiride pre-treatments. CONCLUSION: These findings demonstrated that when administered chronically, atomoxetine has a significant effect on ADHD-associated pain hypersensitization, likely mediated by both α- and ß-adrenergic and D2/D3 dopaminergic receptors, and suggest new indications for atomoxetine that will need to be confirmed by well-designed clinical trials.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Metilfenidato , Masculino , Ratones , Animales , Clorhidrato de Atomoxetina/farmacología , Clorhidrato de Atomoxetina/uso terapéutico , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Oxidopamina , Propilaminas/farmacología , Dolor/tratamiento farmacológico , Comorbilidad , Inhibidores de Captación Adrenérgica/efectos adversos
11.
Curr Protoc ; 3(1): e649, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36602296

RESUMEN

ß-adrenergic receptors regulate cardiac function in both the healthy and failing heart. Their expression is decreased in heart failure due to chronic overactivation of the sympathetic nervous system, contributing to declines in cardiac function and disease progression. Furthermore, therapies that prevent ß-adrenergic receptor downregulation or restore ß-adrenergic receptor levels are beneficial, making the determination of cardiac ß-adrenergic receptor expression in the heart an important consideration. Although quantitative RT-PCR can provide an indication of ß-adrenergic receptor density and subtype expression, mRNA levels do not always correlate with functional protein levels. Additionally, antibodies to ß-adrenergic receptors lack specificity, making immunoblotting and other antibody-based techniques unreliable. Radioligand binding assays were developed over 50 years ago and remain the gold standard for quantifying ß-adrenergic receptor densities in biological samples. This technique capitalizes on the binding of high-affinity, highly specific ligands to receptors and can give quantifiable levels of receptor expression. Furthermore, competition assays using subtype-selective antagonists generate binding profiles and can differentiate ß-adrenergic receptor subtype expression in cardiac tissue. This article focuses on the quantification of ß-adrenergic receptors in the heart using saturation and competition radioligand binding techniques to quantify ß-adrenergic receptor density and ligand affinities in cardiac membranes. © 2023 Wiley Periodicals LLC. Basic Protocol: Radioligand binding to quantify adrenergic receptor expression in the heart.


Asunto(s)
Adrenérgicos , Insuficiencia Cardíaca , Humanos , Receptores Adrenérgicos/genética , Receptores Adrenérgicos/metabolismo , Corazón , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Insuficiencia Cardíaca/genética
12.
Ther Apher Dial ; 27(4): 790-801, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36719401

RESUMEN

INTRODUCTION: Following SARS-CoV-2-infection up to 21% of patients will develop post-COVID-syndrome. Autoantibodies (AAbs) targeting neuronal-ß-adrenergic and muscarinic receptors may provide crucial contributions to the pathophysiology of this condition. Immunoadsorption (IA) has been identified as an effective means of removing AAbs and has resulted in clinical improvements of other autoantibody-associated diseases. METHODS: We determined AAb-levels (anti-ß1/ß2 and anti-M3/M4 receptor) in 178 patients diagnosed with post-COVID-syndrome and described the clinical courses of two patients with elevated AAb-levels that underwent IA-treatment. RESULTS: AAbs were detected in 57% (101/178) of patients diagnosed with post-COVID-syndrome. Substantial reductions in AAb-levels and clinical remission were achieved in one of two patients who was treated with IA. However, this patient relapsed within 6 weeks with a concomitant increase in AAb-levels. CONCLUSION: Collectively, AAbs may play a pathophysiologic role in post-COVID and their removal provide transient benefits in some patients. However, these findings should be further investigated in randomized-controlled-trials.


Asunto(s)
COVID-19 , Humanos , Autoanticuerpos , COVID-19/terapia , SARS-CoV-2 , Síndrome
13.
Immunobiology ; 228(2): 152335, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36689825

RESUMEN

Dopamine is a key neurotransmitter that links the nervous and the immune system. Bisphenol A (BPA) is an endocrine disruptor with a wide distribution in the environment that is used in the manufacturing of plastic products. Evidence shows that BPA can interfere with the central dopaminergic transmission; however, there are no previous reports of this effect outside the central nervous system. Thus, the aim of this work was to investigate the in vitro mechanisms of action involved in the response to dopamine in both human keratinocyte and macrophage cell lines chronically exposed to BPA. Dopamine modulates cytokine secretion and NF-κB expression in BPA-treated HaCaT keratinocytes, without modifying these parameters in BPA-treated THP-1 macrophages. In addition, dopamine increases MMP activity in both BPA-treated cell lines, although it decreases keratinocytes migration. We suggest the immunomodulatory effect of dopamine might be different in keratinocytes and macrophages under chronical BPA exposure conditions. These findings revealed for the first time the in vitro immunomodulatory effect of dopamine in the presence of BPA at peripheral level.


Asunto(s)
Dopamina , Macrófagos , Humanos , Dopamina/metabolismo , Dopamina/farmacología , Fenoles/metabolismo , Fenoles/farmacología , Compuestos de Bencidrilo/metabolismo , Compuestos de Bencidrilo/farmacología , Queratinocitos/metabolismo
14.
Brain Res ; 1804: 148250, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36690167

RESUMEN

Hippocampal-dependent memory abilities including spatial memory decline with age. Exercise improves memory decline in aging brain, but, the precise mechanisms are still unknown. Learning and memory are recently hypothesized to be mediated by a ß-arrestin (ßArr)-dependent ß-adrenergic pathway. Hence, we examined the effect of 8 weeks of treadmill exercise on hippocampal expression of ß-adrenergic receptors (ß-ARs; members of the G protein-coupled receptor family), and ßArrs as well as spatial learning and memory in aged male rats to determine whether ß-AR/ßArr pathway could be involved in age-related memory decline. A total of 24 young (3-month-old) and aged (18-month-old) male Wistar rats were divided into young control, aged sedentary, and aged + exercise (n = 8 for each). Western blot for ß1- and ß2-ARs as well as ßArr1 and ßArr2 was performed. Spatial learning and memory were evaluated with the Morris water maze. The results showed significant up-regulation of ß1-ARs as well as significant down-regulation of ß2-AR and ßArrs (ßArr1 and ßArr2) in the hippocampus of aged rats. Spatial memory, but not spatial learning, was impaired in aging, and treadmill exercise improved it. Notably, the improvement in spatial memory was accompanied by amelioration of ß-ARs dysregulation and increase in ßArr2 levels after exercise. There was a negative association between the expression of ßArr2 and ß1-AR, but not ß2-AR, such that an increase in ßArr2 by exercise was associated with reduced ß1-AR expression, suggesting ßArr2 may contribute to posttranslational down-regulation of ß1-ARs. These data suggest that both G protein-dependent and ß-arrestin-dependent ß-AR pathways may regulate spatial learning and memory in aging brain.


Asunto(s)
Receptores Adrenérgicos beta , Memoria Espacial , Ratas , Masculino , Animales , Receptores Adrenérgicos beta/metabolismo , beta-Arrestinas/metabolismo , Ratas Wistar , Hipocampo/metabolismo , Trastornos de la Memoria , Proteínas de Unión al GTP/metabolismo
15.
Small ; 19(14): e2207029, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36703529

RESUMEN

The establishment of effective antitumor immune responses of vaccines is mainly limited by insufficient priming tumor infiltration of T cells and immunosuppressive tumor microenvironment (TME). Targeting ß-adrenergic receptor (ß-AR) signaling exerts promising benefits on reversing the suppressive effects directly on T cells, but it appears to have considerably limited antitumor performance when combined with vaccine-based immunotherapies. Herein, a tumor membrane-coated nanoplatform for codelivery of adjuvant CpG and propranolol (Pro), a ß-AR inhibitor is designed. The biomimetic nanovaccine displayed an improved accumulation in lymph nodes and sufficient drug release, thereby inducing dendritic cell maturation and antigen presentation. Meanwhile, the integration of vaccination and blockade of ß-AR signaling not only promoted the priming of the naive CD8+ T cells and effector T cell egress from lymph nodes, but also alleviated the immunosuppressive TME by decreasing the frequency of immunosuppressive cells and increasing the tumor infiltration of B cells and NK cells. Consequently, the biomimetic nanovaccines outperformed greater prophylactic and therapeutic efficacy than nanovaccines without Pro encapsulation in B16-F10 melanoma mice. Taken together, the work explored a biomimetic nanovaccine for priming tumor infiltration of T cells and immunosuppressive TME regulation, offering tremendous potential for a combined ß-AR signaling-targeting strategy in cancer immunotherapy.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Animales , Ratones , Receptores Adrenérgicos beta , Biomimética , Inmunoterapia , Transducción de Señal , Neoplasias/tratamiento farmacológico , Propranolol/farmacología , Ratones Endogámicos C57BL , Células Dendríticas , Microambiente Tumoral
16.
Eur J Med Chem ; 246: 114961, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36495629

RESUMEN

Biomedical applications of molecules that are able to modulate ß-adrenergic signaling have become increasingly attractive over the last decade, revealing that ß-adrenergic receptors (ß-ARs) are key targets for a plethora of therapeutic interventions, including cancer. Despite successes in ß-AR drug discovery, identification of ß-AR ligands that are useful as selective chemical tools in pharmacological studies of the three ß-AR subtypes, or lead compounds for drug development is still a highly challenging task. This is mainly due to the intrinsic plasticity of ß-ARs as G protein-coupled receptors in conjunction with the requirement for functional receptor subtype selectivity, tissue specificity and minimal off-target effects. With the aim to provide insight into structure-activity relationships for the three ß-AR subtypes, we have synthesized and obtained the pharmacological profile of a series of structurally diverse compounds (named MC) that were designed based on the aryloxy-propanolamine scaffold of SR59230A. Comparative analysis of their predicted binding mode within the active and inactive states of the receptors in combination with their pharmacological profile revealed key structural elements that control their activity as agonists or antagonists, in addition to clues about substituents that mediate selectivity for one receptor subtype over the others. We anticipate that these results will facilitate selective ß-AR drug development efforts.


Asunto(s)
Receptores Adrenérgicos beta , Receptores Acoplados a Proteínas G , Humanos , Receptores Adrenérgicos beta/química , Receptores Adrenérgicos beta/metabolismo , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Relación Estructura-Actividad
17.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361620

RESUMEN

It is well-recognized that cigarette smoking is a primary risk factor in the development of non-small cell lung cancer (NSCLC), known to account for ~80% of all lung cancers with nicotine recognized as the major addictive component. In investigating the effect of nicotine, brain-derived neurotrophic factor (BDNF), and the ß-adrenergic receptor blocker, propranolol, on sensitivity of NSCLC cell lines, A549 and H1299, to cisplatin, we found increased cell viability, and enhanced cisplatin resistance with nicotine and/or BDNF treatment while opposite effects were found upon treatment with propranolol. Cell treatment with epinephrine or nicotine led to EGFR and IGF-1R activation, effects opposite to those found with propranolol. Blocking EGFR and IGF-1R activation increased cell sensitivity to cisplatin in both cell lines. PI3K and AKT activities were upregulated by nicotine or BDNF and downregulated by cell treatment with inhibitors against EGFR and IGF-1R and by propranolol. Apoptosis and cell sensitivity to cisplatin increased upon co-treatment of cells with cisplatin and inhibitors against PI3K or AKT. Our findings shed light on an interplay between nicotine, BDNF, and ß-Adrenergic receptor signaling in regulating survival of lung cancer cells and chemoresistance which can likely expand therapeutic opportunities that target this regulatory network in the future.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Cisplatino/farmacología , Cisplatino/uso terapéutico , Nicotina/farmacología , Factor Neurotrófico Derivado del Encéfalo/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores ErbB/metabolismo , Propranolol/farmacología , Propranolol/uso terapéutico , Antagonistas Adrenérgicos/farmacología , Resistencia a Antineoplásicos , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Adrenérgicos beta , Línea Celular Tumoral
18.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36142320

RESUMEN

The potential of human-induced pluripotent stem cells (hiPSCs) to be differentiated into cardiomyocytes (CMs) mimicking adult CMs functional morphology, marker genes and signaling characteristics has been investigated since over a decade. The evolution of the membrane localization of CM-specific G protein-coupled receptors throughout differentiation has received, however, only limited attention to date. We employ here advanced fluorescent spectroscopy, namely linescan Fluorescence Correlation Spectroscopy (FCS), to observe how the plasma membrane abundance of the ß1- and ß2-adrenergic receptors (ß1/2-ARs), labelled using a bright and photostable fluorescent antagonist, evolves during the long-term monolayer culture of hiPSC-derived CMs. We compare it to the kinetics of observed mRNA levels in wildtype (WT) hiPSCs and in two CRISPR/Cas9 knock-in clones. We conduct these observations against the backdrop of our recent report of cell-to-cell expression variability, as well as of the subcellular localization heterogeneity of ß-ARs in adult CMs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Adulto , Diferenciación Celular/genética , Membrana Celular , Células Cultivadas , Humanos , Miocitos Cardíacos/metabolismo , ARN Mensajero/metabolismo , Receptores Adrenérgicos beta/metabolismo , Espectrometría de Fluorescencia
20.
Am J Physiol Heart Circ Physiol ; 323(2): H276-H284, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35714176

RESUMEN

ß-Blocker (BB) use is a mainstay for the treatment of heart failure (HF) with reduced ejection fraction (HFrEF), whereas its efficacy for heart failure with preserved ejection fraction (HFpEF) remains controversial. Women outnumber men in HFpEF, whereas men outnumber women in HFrEF. Plasma B-type natriuretic peptide (BNP) is established as a biomarker for HF. We examined whether BB use is associated with plasma BNP levels differently in men and women with HFpEF. The study subjects comprised 721 patients with HFpEF [left ventricular ejection fraction (LVEF) ≥ 50%] (184 men, mean age 78.2 ± 9.2 yr and 537 women, mean age 83.1 ± 8.8 yr), 179 on BB (66 men and 113 women) and 542 no BB (118 men and 424 women), 583 in sinus rhythm (SR) and 138 in atrial fibrillation (AF). A multivariable logistic regression test was used. Plasma BNP levels were higher (P = 0.0005), systolic blood pressure and LVEF lower (P = 0.0003, and P = 0.0059, respectively) on BBs than on no BBs in women, whereas in men, plasma BNP levels, systolic blood pressure, and LVEF were not altered significantly (P = 0.0849, P = 0.9129, and P = 0.4718, respectively) on BBs compared with no BBs in patients with SR. Multivariable logistic regression analysis revealed that BB use and women were a positive and a negative predictor for high BNP levels (P = 0.003 and P = 0.032, respectively) in SR but not in AF. BB use was associated with high-plasma BNP levels and lower LVEF in women but not in men with HFpEF and SR, suggesting that the pathogenesis and treatment of HFpEF may differ in men and women in SR.NEW & NOTEWORTHY Pathogenesis and treatment for heart failure with preserved ejection fraction (HFpEF) may differ in men and women in sinus rhythm (SR).


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Antagonistas Adrenérgicos beta/uso terapéutico , Anciano , Anciano de 80 o más Años , Femenino , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Masculino , Péptido Natriurético Encefálico , Pronóstico , Volumen Sistólico/fisiología , Función Ventricular Izquierda/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA