Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(8)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39203671

RESUMEN

This study employed nano-indentation technology, molecular dynamics simulation, and experimental investigation to examine the stress relaxation behaviour of a polycrystalline γ-TiAl alloy. The simulation enabled the generation of a load-time curve, the visualisation of internal defect evolution, and the mapping of stress distribution across each grain during the stress relaxation stage. The findings indicate that the load remains stable following an initial decline, thereby elucidating the underlying mechanism of load change during stress relaxation. Furthermore, a nano-indentation test was conducted on the alloy, providing insight into the load variation and stress relaxation behaviour under different loading conditions. By comparing the simulation and experimental results, this study aims to guide the theoretical research and practical application of γ-TiAl alloys.

2.
Materials (Basel) ; 16(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37895697

RESUMEN

Due to its excellent physical properties, γ-TiAl alloy has been widely used in thin-walled components of aerospace engines. However, issues such as low thermal conductivity, poor machinability, and high cutting temperatures often result in difficulties in ensuring the geometric accuracy and surface integrity of the parts. This paper focuses on the study of the thermal deformation behavior of γ-TiAl alloy within a range of higher temperatures and strain rates. Firstly, by conducting quasi-static tests and Hopkinson bar tests on γ-TiAl alloy, the true stress-strain curves of γ-TiAl alloy are obtained within a temperature range of 20~500 °C and a strain rate range of 3000~11,000/s. Based on the Johnson-Cook model, the true stress-strain curves are fitted and analyzed with consideration of the coupling effect of strain rate, temperature, and strain. The strain rate hardening coefficient C and thermal softening exponent m are polynomialized, improving the Johnson-Cook constitutive model of γ-TiAl alloy. The improved model shows significant improvements in the correlation coefficient and absolute errors between the predicted values and experimental values, providing a better reflection of the thermal deformation behavior of γ-TiAl alloy within a range of higher temperatures and strain rates.

3.
Materials (Basel) ; 14(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33808000

RESUMEN

Gamma-TiAl (γ-TiAl) alloys can be used in high-end products relevant to the aerospace, defense, biomedical, and marine industries. Fabricating objects made of γ-TiAl alloys needs an additive manufacturing process called Electron Beam Melting (EBM) or other similar processes because these alloys are difficult-to-cut materials. An object fabricated by EBM exhibits poor surface finish and must undergo postprocessing. In this study, cylindrical specimens were fabricated by EBM and post-processed by turning at different cutting conditions (cutting speed, depth of cut, feed rate, insert radius, and coolant flowrate). The EBM conditions were as follows: average powder size 110 µm, acceleration voltage 60 kV, beam current 10 mA, beam scanning speed 2200 mm/s, and beam focus offset 0.20 mm. The surface roughness and cutting force were recorded for each set of cutting conditions. The values of the cutting conditions were set by the L36 Design of Experiment approach. The effects of the cutting conditions on surface roughness and cutting force are elucidated by constructing the possibility distributions (triangular fuzzy numbers) from the experimental data. Finally, the optimal cutting conditions to improve the surface finish of specimens made of γ-TiAl alloys are determined using the possibility distributions. Thus, this study's outcomes can be used to develop intelligent systems for optimizing additive manufacturing processes.

4.
Materials (Basel) ; 13(21)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126445

RESUMEN

The joining of alumina (Al2O3) to γ-TiAl and Ti6Al4V alloys, using Ag-Cu sputter-coated Ti brazing filler foil, was investigated. Brazing experiments were performed at 980 °C for 30 min in vacuum. The microstructure and chemical composition of the brazed interfaces were analyzed by scanning electron microscopy and by energy dispersive X-ray spectroscopy, respectively. A microstructural characterization of joints revealed that sound multilayered interfaces were produced using this novel brazing filler. Both interfaces are composed mainly of α-Ti, along with Ti2(Ag,Cu) and TiAg intermetallics. In the case of the brazing of γ-TiAl alloys, α2-Ti3Al and γ-TiAl intermetallics are also detected at the interface. Bonding to Al2O3 is promoted by the formation of a quite hard Ti-rich layer, which may reach a hardness up to 1872 HV 0.01 and is possibly composed of a mixture of α-Ti and Ti oxides. Hardness distribution maps indicate that no segregation of either soft or brittle phases occurs at the central regions of the interfaces or near the base Ti alloys. In addition, a smooth hardness transition was established between the interface of Al2O3 to either γ-TiAl or Ti6Al4V alloys.

5.
Heliyon ; 6(7): e04463, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32728641

RESUMEN

The high strength-to-weight ratio property of titanium aluminide (TiAl) based intermetallic alloys makes researchers regard this type of material as a potential replacement for the heavier superalloys of nickel. These alloys have been applied as turbocharger wheels of automobile and turbine blades of aircraft engines. A much recent alloy type of TiAl called the TNM alloy has emerged and primarily amenable to mechanical working; while providing the best combinations of mechanical properties that could be achieved through manufacturing processes with subsequent heat treatments. This is attained by solidifying entirely through the disordered ß-phase (A2 structure). Effects of major alloying elements such as strength improvement, microstructural stability and phase formation demand the understanding of these alloying elements addition in TiAl-based intermetallic alloys. This review paper aims at encapsulating several works regarding the effects of major alloying elements on ß-solidifying TiAl-based alloys and summarizing the characteristic effects of Si for these types of alloys. An impetus for future works on these types of intermetallic TiAl-based alloys is also presented.

6.
Materials (Basel) ; 13(9)2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32344869

RESUMEN

The bonding properties of the twin boundary in polysynthetic twinned γ-TiAl crystal and the effect of interstitial alloy elements on it are investigated by first principles. Among the three different kinds of interface relationships in the γ/γ interface, the proportion of true twin boundaries is the highest because it has the lowest interfacial energy, the reason for which is discussed by local energy and three-center bond. The presence of the interstitial atoms C, N, H, and O induces the competition for domination between their affinity to host atoms and three-center bonds, which eventually influences the values of unstable stacking fault energy (USFE) and intrinsic stacking fault energy (ISFE). The relative importance of different bonding with different alloy elements is clarified based on the analysis of local energy combined with Electron Localization Function (ELF) and Quantum Theory of Atoms in Molecules (QTAIM) schemes.

7.
Materials (Basel) ; 12(21)2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31653069

RESUMEN

The effects of influential fatigue testing factors, including loading schemes (e.g., traditional load shedding and staircase load increasing), morphology of crack starters, and precracking approaches on the near-threshold fatigue crack growth behaviors for a near lamellar γ-TiAl alloy (Ti-45Al-2Mn-2Nb-1B) were investigated at room temperature and 650 °C. The results showed that the measured fatigue threshold values in lamellar γ-TiAl alloys are very sensitive to the applied testing procedures. For example, the staircase load-increasing method yielded smaller threshold values. When such a load-increasing method was used, the threshold values were measured either from a notch machined by electro-discharge machining or prepared by a compression-compression fatigue loading. Moreover, some differences could be seen with respect to the morphologies of the crack starters. Most of the above influences are associated with the brittle nature of the material and the characteristics of the lamellar microstructures, and closure effects are primarily induced by crack wake roughness or unbroken ligaments.

8.
Materials (Basel) ; 12(9)2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31075938

RESUMEN

Intermetallic γ-TiAl based alloys are innovative lightweight structural high-temperature materials used in aerospace and automotive applications due to already established industrial-scale processing routes, like casting and hot-working, i.e., forging. A promising alternative method of production, regarding manufacturing of near net-shape components, goes over the powder metallurgy route, more precisely by densification of TiAl powder via spark plasma sintering. In this study, gas atomized powder from the 4th generation TNM alloy, Ti-43.5Al-4Nb-1Mo-0.1B (in at.%), was densified and the microstructure was investigated by means of electron microscopy and X-ray diffraction. The sintered microstructure exhibits lamellar α2-Ti3Al /γ-TiAl colonies surrounded by globular γ- and ordered ßo-TiAl phase. The coarse lamellar spacing stems from the low cooling rate after densification at sintering temperature. Against this background, subsequent heat treatments were designed to decrease the lamellar widths by a factor of ten. Accompanying, tensile tests and creep experiments at different temperatures revealed that the modified almost fully lamellar microstructure is enhanced in strength and creep resistance, where a small volume fraction of globular γ-phase provides ductility at ambient temperatures.

9.
Materials (Basel) ; 12(5)2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30845712

RESUMEN

The periodicity and density of atomic arrangement vary with the crystal orientation, which results in different deformation mechanisms and mechanical properties of γ-TiAl. In this paper, the anisotropic characteristics for γ-TiAl with (100), ( 1 ¯ 10 ) and (111) surfaces during nanoindentation at 300 K have been investigated by molecular dynamics simulations. It is found that there is no obvious pop-in event in all load-depth curves when the initial plastic deformation of γ-TiAl samples occurs, because the dislocation nucleates before the first load-drop; while a peak appears in both the unloading curves of the ( 1 ¯ 10 ) and (111) samples due to the release of energy. Stacking faults, twin boundaries and vacancies are formed in all samples; however, interstitials are formed in the (100) sample, a stacking fault tetrahedron is formed in the (111) sample; and two prismatic dislocation loops with different activities are formed in the ( 1 ¯ 10 ) and (111) samples, respectively. It is also concluded that the values of the critical load, strain energy, hardness and elastic modulus for the (111) sample are the maximum, and for the (100) sample are the minimum. Furthermore, the orientation dependence of the elastic modulus is greater than the hardness and critical load.

10.
Materials (Basel) ; 11(6)2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29914121

RESUMEN

In this paper, molecular dynamics simulations are performed to study the annealing process of γ-TiAl alloy with different parameters after introducing residual stress into prepressing. By mainly focusing on the dynamic evolution process of microdefects during annealing and the distribution of residual stress, the relationship between microstructure and residual stress is investigated. The results show that there is no phase transition during annealing, but atom distortion occurs with the change of temperature, and the average grain size slightly increases after annealing. There are some atom clusters in the grains, with a few point defects, and the point defect concentration increases with the rise in temperature, and vice versa; the higher the annealing temperature, the fewer the point defects in the grain after annealing. Due to the grain boundary volume shrinkage and and an increase in the plastic deformation of the grain boundaries during cooling, stress is released, and the average residual stress along Y and Z directions after annealing is less than the average residual stress after prepressing.

11.
Materials (Basel) ; 11(1)2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29342074

RESUMEN

In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW) technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at %) alloy part was produced by Electron Beam Melting (EBM). This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti3Al followed by Al3NiTi2 and AlNi2Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.

12.
Materials (Basel) ; 9(9)2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28773880

RESUMEN

Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a ß-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA