Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 801: 149541, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34418620

RESUMEN

The Bikar and Bokak Atolls, located in the northern Marshall Islands, are extremely isolated and consist of pristine marine and terrestrial ecosystems. Both atolls may have experienced significant radioactive deposition following the nuclear weapon testing conducted at Bikini and Enewetak proving grounds. Here we report activity concentrations of artificial radionuclides (239Pu, 240Pu, 241Pu, 241Am, 137Cs and 90Sr) in marine and terrestrial samples collected from Bikar and Bokak Atolls. Artificial radionuclides in soil from the Majuro Atoll are also reported and form a radiological baseline against which the levels at the other atolls can be compared. We observed low levels of artificial radionuclides in soil from Majuro and Bokak, but significantly higher levels in soil from Bikar. The residual radioactivity in the Bikar environment is comparable to the levels previously reported for other nearby atolls, including Taka and Utrik, but lower than for Rongerik, Rongelap, Bikini and Enewetak. An analysis of 240Pu/239Pu isotope ratios and estimations of the dates of contamination from 241Am/241Pu activity ratios both indicated that the Bikar Atoll was contaminated mainly by radioactive fallout from the Castle Bravo test in 1954. We compare the results of our measurements at Bikar and Bokak to data from other atolls in the Marshall Islands and to regions of the world affected by both global and regional fallout from atmospheric nuclear weapons testing and nuclear accidents.


Asunto(s)
Armas Nucleares , Plutonio , Monitoreo de Radiación , Ceniza Radiactiva , Contaminantes Radiactivos del Suelo , Radioisótopos de Cesio/análisis , Ecosistema , Isótopos , Ceniza Radiactiva/análisis , Contaminantes Radiactivos del Suelo/análisis
2.
J Environ Radioact ; 124: 29-36, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23639692

RESUMEN

Three underground nuclear tests, including the Unites States' largest, were conducted on Amchitka Island, Alaska. Monitoring of the radiological environment around the island is challenging because of its remote location. In 2008, the Department of Energy (DOE) Office of Legacy Management (LM) became responsible for the long term maintenance and surveillance of the Amchitka site. The first DOE LM environmental survey occurred in 2011 and is part of a cycle of activities that will occur every 5 years. The University of Alaska Fairbanks, a participant in the 2011 study, provided the lichen (Cladonia spp.), freshwater moss (Fontinalis neomexicanus), kelp (Eualaria fistulosa) and horse mussel (Modiolus modiolus) samples from Amchitka Island and Adak Island (a control site). These samples were analyzed for (239)Pu and (240)Pu concentration and (240)Pu/(239)Pu atom ratio using inductively coupled plasma sector field mass spectrometry (ICP-SFMS). Plutonium concentrations and (240)Pu/(239)Pu atom ratios were generally consistent with previous terrestrial and marine studies in the region. The ((239)+)(240)Pu levels (mBq kg(-1), dry weight) ranged from 3.79 to 57.1 for lichen, 167-700 for kelp, 27.9-148 for horse mussel, and 560-573 for moss. Lichen from Adak Island had higher Pu concentrations than Amchitka Island, the difference was likely the result of the higher precipitation at Adak compared to Amchitka. The (240)Pu/(239)Pu atom ratios were significantly higher in marine samples compared to terrestrial and freshwater samples (t-test, p < 0.001); lichen and moss averaged 0.184 ± 0.007, similar to the integrated global fallout ratio, whereas kelp and mussel (soft tissue) averaged 0.226 ± 0.003. These observations provide supporting evidence that a large input of isotopically heavier Pu occurred into the North Pacific Ocean, likely from the Marshall Island high yield nuclear tests, but other potential sources, such as the Kamchatka Peninsula Rybachiy Naval Base and Amchitka Island underground nuclear test site cannot be ruled out.


Asunto(s)
Plutonio/análisis , Monitoreo de Radiación/métodos , Contaminantes Radiactivos/análisis , Alaska , Animales , Biota , Bivalvos , Bryopsida , Sedimentos Geológicos/análisis , Islas , Líquenes , Espectrometría de Masas/métodos , Armas Nucleares , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA