Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PeerJ ; 7: e6793, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31110918

RESUMEN

Compared to previous releases of genetically modified organisms (GMOs) which were primarily plants, gene drives represent a paradigm shift in the handling of GMOs: Current regulation of the release of GMOs assumes that for specific periods of time a certain amount of GMOs will be released in a particular region. However, now a type of genetic technology arises whose innermost principle lies in exceeding these limits-the transformation or even eradication of wild populations. The invasive character of gene drives demands a thorough analysis of their functionalities, reliability and potential impact. But such investigations are hindered by the fact that an experimental field test would hardly be reversible. Therefore, an appropriate prospective assessment is of utmost importance for an estimation of the risk potential associated with the application of gene drives. This work is meant to support the inevitable characterization of gene drives by a comparative approach of prospective technology assessment with a focus on potential sources of risk. Therein, the hazard and exposure potential as well as uncertainties with regard to the performance of synthetic gene drives are addressed. Moreover, a quantitative analysis of their invasiveness should enable a differentiated evaluation of their power to transform wild populations.

2.
Sci Rep ; 8(1): 1565, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29371617

RESUMEN

For frequently used engineered nanomaterials (ENMs) CeO2-, SiO2-, and Ag, past, current, and future use and environmental release are investigated. Considering an extended period (1950 to 2050), we assess ENMs released through commercial activity as well as found in natural and technical settings. Temporal dynamics, including shifts in release due to ENM product application, stock (delayed use), and subsequent end-of-life product treatment were taken into account. We distinguish predicted concentrations originating in ENM use phase and those originating from end-of-life release. Furthermore, we compare Ag- and CeO2-ENM predictions with existing measurements. The correlations and limitations of the model, and the analytic validity of our approach are discussed in the context of massive use of assumptive model data and high uncertainty on the colloidal material captured by the measurements. Predictions for freshwater CeO2-ENMs range from 1 pg/l (2017) to a few hundred ng/l (2050). Relative to CeO2, the SiO2-ENMs estimates are approximately 1,000 times higher, and those for Ag-ENMs 10 times lower. For most environmental compartments, ENM pose relatively low risk; however, organisms residing near ENM 'point sources' (e.g., production plant outfalls and waste treatment plants), which are not considered in the present work, may be at increased risk.


Asunto(s)
Ingeniería Química , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Modelos Teóricos , Nanoestructuras/análisis , Contaminantes Ambientales/toxicidad , Humanos , Nanoestructuras/toxicidad , Factores de Riesgo
3.
Sci Total Environ ; 535: 160-71, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25728395

RESUMEN

Engineered nanomaterials (ENM) offer enhanced or new functionalities and properties that are used in various products. This also entails potential environmental risks in terms of hazard and exposure. However, hazard and exposure assessment for ENM still suffer from insufficient knowledge particularly for product-related releases and environmental fate and behavior. This study therefore analyzes the multiple impacts of the product use, the properties of the matrix material, and the related waste management system (WMS) on the predicted environmental concentration (PEC) by applying nine prospective life cycle release scenarios based on reasonable assumptions. The products studied here are clothing textiles treated with silver nanoparticles (AgNPs), since they constitute a controversial application. Surprisingly, the results show counter-intuitive increases by a factor of 2.6 in PEC values for the air compartment in minimal AgNP release scenarios. Also, air releases can shift from washing to wearing activity; their associated release points may shift accordingly, potentially altering release hot spots. Additionally, at end-of-life, the fraction of AgNP-residues contained on exported textiles can be increased by 350% when assuming short product lifespans and globalized WMS. It becomes evident that certain combinations of use activities, matrix material characteristics, and WMS can influence the regional PEC by several orders of magnitude. Thus, in the light of the findings and expected ENM market potential, future assessments should consider these aspects to derive precautionary design alternatives and to enable prospective global and regional risk assessments.


Asunto(s)
Contaminantes Ambientales/análisis , Nanoestructuras/análisis , Administración de Residuos/métodos , Residuos , Monitoreo del Ambiente , Estudios Prospectivos , Medición de Riesgo
4.
Nanoscale ; 5(3): 1034-46, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23255050

RESUMEN

Iron oxide nanoparticles (IONP) are currently being studied as green magnet resonance imaging (MRI) contrast agents. They are also used in huge quantities for environmental remediation and water treatment purposes, although very little is known on the consequences of such applications for organisms and ecosystems. In order to address these questions, we synthesised polyvinylpyrrolidone-coated IONP, characterised the particle dispersion in various media and investigated the consequences of an IONP exposure using an array of biochemical and biological assays. Several theoretical approaches complemented the measurements. In aqueous dispersion IONP had an average hydrodynamic diameter of 25 nm and were stable over six days in most test media, which could also be predicted by stability modelling. The particles were tested in concentrations of up to 100 mg Fe per L. The activity of the enzymes glutathione reductase and acetylcholine esterase was not affected, nor were proliferation, morphology or vitality of mammalian OLN-93 cells although exposure of the cells to 100 mg Fe per L increased the cellular iron content substantially. Only at this concentration, acute toxicity tests with the freshwater flea Daphnia magna revealed slightly, yet insignificantly increased mortality. Two fundamentally different bacterial assays, anaerobic activated sludge bacteria inhibition and a modified sediment contact test with Arthrobacter globiformis, both rendered results contrary to the other assays: at the lowest test concentration (1 mg Fe per L), IONP caused a pronounced inhibition whereas higher concentrations were not effective or even stimulating. Preliminary and prospective risk assessment was exemplified by comparing the application of IONP with gadolinium-based nanoparticles as MRI contrast agents. Predicted environmental concentrations were modelled in two different scenarios, showing that IONP could reduce the environmental exposure of toxic Gd-based particles by more than 50%. Application of the Swiss "Precautionary Matrix for Synthetic Nanomaterials" rendered a low precautionary need for using our IONP as MRI agents and a higher one when using them for remediation or water treatment. Since IONP and (considerably more reactive) zerovalent iron nanoparticles are being used in huge quantities for environmental remediation purposes, it has to be ascertained that these particles pose no risk to either human health or to the environment.


Asunto(s)
Daphnia/efectos de los fármacos , Daphnia/fisiología , Tecnología Química Verde/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad , Modelos Químicos , Agua/química , Animales , Simulación por Computador , Humanos , Ensayo de Materiales , Tamaño de la Partícula , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA