Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Transl Oncol ; 43: 101857, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38412661

RESUMEN

Targeting aberrantly expressed kinases in malignant pleural mesothelioma (MPM) is a promising therapeutic strategy. We here investigated the effect of the novel and highly selective Phosphoinositide 3-kinase delta (PI3K-δ) inhibitor roginolisib (IOA-244) on MPM cells and on the immune cells in MPM microenvironment. To this aim, we analyzed the expression of PI3K-δ by immunohistochemistry in specimens from primary MPM, cell viability and death in three different MPM cell lines treated with roginolisib alone and in combination with ipatasertib (AKT inhibitor) and sapanisertib (mTOR inhibitor). In a co-culture model of patient-derived MPM cells, autologous peripheral blood mononuclear cells and fibroblasts, the tumor cell viability and changes in immune cell composition were investigated after treatment of roginolisib with nivolumab and cisplatin. PI3K-δ was detected in 66/89 (74%) MPM tumors and was associated with reduced overall survival (12 vs. 25 months, P=0.0452). Roginolisib induced apoptosis in MPM cells and enhanced the anti-tumor efficacy of AKT and mTOR kinase inhibitors by suppressing PI3K-δ/AKT/mTOR and ERK1/2 signaling. Furthermore, the combination of roginolisib with chemotherapy and immunotherapy re-balanced the immune cell composition, increasing effector T-cells and reducing immune suppressive cells. Overall, roginolisib induces apoptosis in MPM cells and increases the antitumor immune cell effector function when combined with nivolumab and cisplatin. These results provide first insights on the potential of roginolisib as a therapeutic agent in patients with MPM and its potential in combination with established immunotherapy regimen.

2.
Int J Toxicol ; 42(6): 515-534, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37667445

RESUMEN

Roginolisib (IOA-244) is a novel, non-ATP competitive phosphoinositide-3-kinase (PI3K) delta inhibitor that regulates Akt/mTOR signaling. Roginolisib was administered once daily to rats and dogs in dose-range finding (DRF) and 4-week GLP toxicology studies. Free plasma levels of roginolisib exceeded the cellular target engagement IC90 for PI3Kδ for ≥12 hours at doses of 5 mg/kg, the IC90 for PI3Kß for ≥2 hours at doses ≥15 mg/kg, and the IC50 for PI3Kα for ≥2 hours at dose levels ≥45 mg/kg. Toxicity in rats occurred at doses ≥100 mg/kg. In dogs, we observed dose-dependent skin and gastrointestinal toxicity and doses ≥30 mg/kg had a greater incidence of mortality. Lymphoid tissue toxicity occurred in both species. Toxicities in dogs observed at the ≥15 mg/kg dose, affecting the digestive mucosa, liver, and skin, cleared after treatment cessation. Doses ≤75 mg/kg were tolerated in rats and the no-observed-adverse-effect-level (NOAEL) in rats was 15 mg/kg. Due to mainly epithelial lesions of the skin at 5 mg/kg and necrotizing damage of the intestinal epithelia at ≥15 mg/kg, no NOAEL was determined in dogs. However, the adverse effects observed in dogs at 5 mg/kg were considered monitorable and reversible in patients with advanced malignancies. Furthermore, the PK profile subsequently proved to be a decisive factor for achieving selective PI3Kδ inhibition without the toxicities observed in dogs. As the result of the unique PK profile of roginolisib, patients were able to take daily roginolisib without dose modification and showed pharmacodynamic PI3Kδ inhibition over several months without gastrointestinal or dermatologic toxicities.


Asunto(s)
Antineoplásicos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Animales , Perros , Ratas , Fosfatidilinositol 3-Quinasas , Inhibidores de Proteínas Quinasas/toxicidad , Inhibidores de las Quinasa Fosfoinosítidos-3/toxicidad
3.
Cancer Res Commun ; 3(4): 576-591, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37066023

RESUMEN

PI3K delta (PI3Kδ) inhibitors are used to treat lymphomas but safety concerns and limited target selectivity curbed their clinical usefulness. PI3Kδ inhibition in solid tumors has recently emerged as a potential novel anticancer therapy through the modulation of T-cell responses and direct antitumor activity. Here we report the exploration of IOA-244/MSC2360844, a first-in-class non-ATP-competitive PI3Kδ inhibitor, for the treatment of solid tumors. We confirm IOA-244's selectivity as tested against a large set of kinases, enzymes, and receptors. IOA-244 inhibits the in vitro growth of lymphoma cells and its activity correlates with the expression levels of PIK3CD, suggesting cancer cell-intrinsic effects of IOA-244. Importantly, IOA-244 inhibits regulatory T cell proliferation while having limited antiproliferative effects on conventional CD4+ T cells and no effect on CD8+ T cells. Instead, treatment of CD8 T cells with IOA-244 during activation, favors the differentiation of memory-like, long-lived CD8, known to have increased antitumor capacity. These data highlight immune-modulatory properties that can be exploited in solid tumors. In CT26 colorectal and Lewis lung carcinoma lung cancer models, IOA-244 sensitized the tumors to anti-PD-1 (programmed cell death protein 1) treatment, with similar activity in the Pan-02 pancreatic and A20 lymphoma syngeneic mouse models. IOA-244 reshaped the balance of tumor-infiltrating cells, favoring infiltration of CD8 and natural killer cells, while decreasing suppressive immune cells. IOA-244 presented no detectable safety concerns in animal studies and is currently in clinical phase Ib/II investigation in solid and hematologic tumors. Significance: IOA-244 is a first-in-class non-ATP-competitive, PI3Kδ inhibitor with direct antitumor in vitro activity correlated with PI3Kδ expression. The ability to modulate T cells, in vivo antitumor activity in various models with limited toxicity in animal studies provides the rationale for the ongoing trials in patients with solid tumors and hematologic cancers.


Asunto(s)
Linfoma , Neoplasias , Ratones , Animales , Linfocitos T CD8-positivos , Fosfatidilinositol 3-Quinasas , Neoplasias/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Linfoma/tratamiento farmacológico , Tolerancia Inmunológica
4.
Angew Chem Int Ed Engl ; 38(3): 336-338, 1999 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29711649

RESUMEN

Unprecedented high activities and selectivities were observed in the hydroformylation of internal octenes to linear products using rhodium catalysts with rigid diphosphane ligands. Dibenzophosphole 1 and a phenoxaphosphane analogue with bite angles of 120 and 119°, respectively, are suited for this.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA